Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jul;11(7):1253–1266. doi: 10.1105/tpc.11.7.1253

Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence.

N Dai 1, A Schaffer 1, M Petreikov 1, Y Shahak 1, Y Giller 1, K Ratner 1, A Levine 1, D Granot 1
PMCID: PMC144264  PMID: 10402427

Abstract

Sugars are key regulatory molecules that affect diverse processes in higher plants. Hexokinase is the first enzyme in hexose metabolism and may be a sugar sensor that mediates sugar regulation. We present evidence that hexokinase is involved in sensing endogenous levels of sugars in photosynthetic tissues and that it participates in the regulation of senescence, photosynthesis, and growth in seedlings as well as in mature plants. Transgenic tomato plants overexpressing the Arabidopsis hexokinase-encoding gene AtHXK1 were produced. Independent transgenic plants carrying single copies of AtHXK1 were characterized by growth inhibition, the degree of which was found to correlate directly to the expression and activity of AtHXK1. Reciprocal grafting experiments suggested that the inhibitory effect occurred when AtHXK1 was expressed in photosynthetic tissues. Accordingly, plants with increased AtHXK1 activity had reduced chlorophyll content in their leaves, reduced photosynthesis rates, and reduced photochemical quantum efficiency of photosystem II reaction centers compared with plants without increased AtHXK1 activity. In addition, the transgenic plants underwent rapid senescence, suggesting that hexokinase is also involved in senescence regulation. Fruit weight, starch content in young fruits, and total soluble solids in mature fruits were also reduced in the transgenic plants. The results indicate that endogenous hexokinase activity is not rate limiting for growth; rather, they support the role of hexokinase as a regulatory enzyme in photosynthetic tissues, in which it regulates photosynthesis, growth, and senescence.

Full Text

The Full Text of this article is available as a PDF (331.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson A., Sabelli P. A., Dickinson J. R., Cole D., Richardson M., Kreis M., Shewry P. R., Halford N. G. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8602–8605. doi: 10.1073/pnas.88.19.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernier G., Havelange A., Houssa C., Petitjean A., Lejeune P. Physiological Signals That Induce Flowering. Plant Cell. 1993 Oct;5(10):1147–1155. doi: 10.1105/tpc.5.10.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Celenza J. L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986 Sep 12;233(4769):1175–1180. doi: 10.1126/science.3526554. [DOI] [PubMed] [Google Scholar]
  4. Dai N., Schaffer A. A., Petreikov M., Granot D. Arabidopsis thaliana hexokinase cDNA isolated by complementation of yeast cells. Plant Physiol. 1995 Jun;108(2):879–880. doi: 10.1104/pp.108.2.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dangl J. L., Preuss D., Schroeder J. I. Talking through walls: signaling in plant development. Cell. 1995 Dec 29;83(7):1071–1077. doi: 10.1016/0092-8674(95)90134-5. [DOI] [PubMed] [Google Scholar]
  6. DeWald D. B., Sadka A., Mullet J. E. Sucrose Modulation of Soybean Vsp Gene Expression Is Inhibited by Auxin. Plant Physiol. 1994 Feb;104(2):439–444. doi: 10.1104/pp.104.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickinson C. D., Altabella T., Chrispeels M. J. Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol. 1991 Feb;95(2):420–425. doi: 10.1104/pp.95.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ding B., Haudenshield J. S., Willmitzer L., Lucas W. J. Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J. 1993 Jul;4(1):179–189. doi: 10.1046/j.1365-313x.1993.04010179.x. [DOI] [PubMed] [Google Scholar]
  9. Entian K. D., Fröhlich K. U. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. J Bacteriol. 1984 Apr;158(1):29–35. doi: 10.1128/jb.158.1.29-35.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Entian K. D. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet. 1980;178(3):633–637. doi: 10.1007/BF00337871. [DOI] [PubMed] [Google Scholar]
  11. Gan S., Amasino R. M. Making Sense of Senescence (Molecular Genetic Regulation and Manipulation of Leaf Senescence). Plant Physiol. 1997 Feb;113(2):313–319. doi: 10.1104/pp.113.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldschmidt E. E., Huber S. C. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol. 1992 Aug;99(4):1443–1448. doi: 10.1104/pp.99.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Graham I. A. Carbohydrate control of gene expression in higher plants. Res Microbiol. 1996 Jul-Sep;147(6-7):572–580. doi: 10.1016/0923-2508(96)84014-9. [DOI] [PubMed] [Google Scholar]
  14. Grupe A., Hultgren B., Ryan A., Ma Y. H., Bauer M., Stewart T. A. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell. 1995 Oct 6;83(1):69–78. doi: 10.1016/0092-8674(95)90235-x. [DOI] [PubMed] [Google Scholar]
  15. Halford N. G., Hardie D. G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol. 1998 Jul;37(5):735–748. doi: 10.1023/a:1006024231305. [DOI] [PubMed] [Google Scholar]
  16. Halford NG, Purcell PC, Hardie DG. Is hexokinase really a sugar sensor in plants? Trends Plant Sci. 1999 Mar;4(3):117–120. doi: 10.1016/s1360-1385(99)01377-1. [DOI] [PubMed] [Google Scholar]
  17. Hensel L. L., Grbić V., Baumgarten D. A., Bleecker A. B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in arabidopsis. Plant Cell. 1993 May;5(5):553–564. doi: 10.1105/tpc.5.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huber S. C., Hanson K. R. Carbon Partitioning and Growth of a Starchless Mutant of Nicotiana sylvestris. Plant Physiol. 1992 Aug;99(4):1449–1454. doi: 10.1104/pp.99.4.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jang J. C., León P., Zhou L., Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997 Jan;9(1):5–19. doi: 10.1105/tpc.9.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jang J. C., Sheen J. Sugar sensing in higher plants. Plant Cell. 1994 Nov;6(11):1665–1679. doi: 10.1105/tpc.6.11.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jiang C. Z., Rodermel S. R., Shibles R. M. Photosynthesis, Rubisco Activity and Amount, and Their Regulation by Transcription in Senescing Soybean Leaves. Plant Physiol. 1993 Jan;101(1):105–112. doi: 10.1104/pp.101.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kanayama Y, Granot D, Dai N, Petreikov M, Schaffer A, Powell A, Bennett AB. Tomato fructokinases exhibit differential expression and substrate regulation . Plant Physiol. 1998 May;117(1):85–90. doi: 10.1104/pp.117.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. King G. A., Davies K. M., Stewart R. J., Borst W. M. Similarities in Gene Expression during the Postharvest-Induced Senescence of Spears and Natural Foliar Senescence of Asparagus. Plant Physiol. 1995 May;108(1):125–128. doi: 10.1104/pp.108.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koch K. E. CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):509–540. doi: 10.1146/annurev.arplant.47.1.509. [DOI] [PubMed] [Google Scholar]
  26. Kovtun Y., Daie J. End-Product Control of Carbon Metabolism in Culture-Grown Sugar Beet Plants (Molecular and Physiological Evidence on Accelerated Leaf Development and Enhanced Gene Expression). Plant Physiol. 1995 Aug;108(4):1647–1656. doi: 10.1104/pp.108.4.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martinez-Barajas E., Randall D. D. Purification and characterization of a glucokinase from young tomato (Lycopersicon esculentum L. Mill.) fruit. Planta. 1998 Aug;205(4):567–573. doi: 10.1007/s004250050357. [DOI] [PubMed] [Google Scholar]
  28. Matschinsky F., Liang Y., Kesavan P., Wang L., Froguel P., Velho G., Cohen D., Permutt M. A., Tanizawa Y., Jetton T. L. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest. 1993 Nov;92(5):2092–2098. doi: 10.1172/JCI116809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miron D., Schaffer A. A. Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase Activities in Developing Fruit of Lycopersicon esculentum Mill. and the Sucrose Accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol. 1991 Feb;95(2):623–627. doi: 10.1104/pp.95.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Muranaka T., Banno H., Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol. 1994 May;14(5):2958–2965. doi: 10.1128/mcb.14.5.2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Newgard C. B., McGarry J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem. 1995;64:689–719. doi: 10.1146/annurev.bi.64.070195.003353. [DOI] [PubMed] [Google Scholar]
  32. Ostling J., Ronne H. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur J Biochem. 1998 Feb 15;252(1):162–168. doi: 10.1046/j.1432-1327.1998.2520162.x. [DOI] [PubMed] [Google Scholar]
  33. Perata P., Matsukura C., Vernieri P., Yamaguchi J. Sugar Repression of a Gibberellin-Dependent Signaling Pathway in Barley Embryos. Plant Cell. 1997 Dec;9(12):2197–2208. doi: 10.1105/tpc.9.12.2197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Prata RTN., Williamson J. D., Conkling M. A., Pharr D. M. Sugar Repression of Mannitol Dehydrogenase Activity in Celery Cells. Plant Physiol. 1997 May;114(1):307–314. doi: 10.1104/pp.114.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ronne H. Glucose repression in fungi. Trends Genet. 1995 Jan;11(1):12–17. doi: 10.1016/s0168-9525(00)88980-5. [DOI] [PubMed] [Google Scholar]
  36. Sadka A., DeWald D. B., May G. D., Park W. D., Mullet J. E. Phosphate Modulates Transcription of Soybean VspB and Other Sugar-Inducible Genes. Plant Cell. 1994 May;6(5):737–749. doi: 10.1105/tpc.6.5.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saier M. H., Jr, Chauvaux S., Deutscher J., Reizer J., Ye J. J. Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. Trends Biochem Sci. 1995 Jul;20(7):267–271. doi: 10.1016/s0968-0004(00)89041-6. [DOI] [PubMed] [Google Scholar]
  38. Schaffer A. A., Petreikov M. Sucrose-to-Starch Metabolism in Tomato Fruit Undergoing Transient Starch Accumulation. Plant Physiol. 1997 Mar;113(3):739–746. doi: 10.1104/pp.113.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smeekens S., Rook F. Sugar Sensing and Sugar-Mediated Signal Transduction in Plants. Plant Physiol. 1997 Sep;115(1):7–13. doi: 10.1104/pp.115.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smeekens S. Sugar regulation of gene expression in plants. Curr Opin Plant Biol. 1998 Jun;1(3):230–234. doi: 10.1016/s1369-5266(98)80109-x. [DOI] [PubMed] [Google Scholar]
  42. Sonnewald U., Brauer M., von Schaewen A., Stitt M., Willmitzer L. Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J. 1991 Jul;1(1):95–106. doi: 10.1111/j.1365-313x.1991.00095.x. [DOI] [PubMed] [Google Scholar]
  43. Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G. P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996 Apr 19;85(2):171–182. doi: 10.1016/s0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
  44. Thomas B. R., Rodriguez R. L. Metabolite Signals Regulate Gene Expression and Source/Sink Relations in Cereal Seedlings. Plant Physiol. 1994 Dec;106(4):1235–1239. doi: 10.1104/pp.106.4.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tobias R. B., Boyer C. D., Shannon J. C. Alterations in Carbohydrate Intermediates in the Endosperm of Starch-Deficient Maize (Zea mays L.) Genotypes. Plant Physiol. 1992 May;99(1):146–152. doi: 10.1104/pp.99.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang Y., Kwon H. B., Peng H. P., Shih M. C. Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol. 1993 Jan;101(1):209–216. doi: 10.1104/pp.101.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhou L., Jang J. C., Jones T. L., Sheen J. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10294–10299. doi: 10.1073/pnas.95.17.10294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. von Schaewen A., Stitt M., Schmidt R., Sonnewald U., Willmitzer L. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J. 1990 Oct;9(10):3033–3044. doi: 10.1002/j.1460-2075.1990.tb07499.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES