Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jul;11(7):1351–1364. doi: 10.1105/tpc.11.7.1351

The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth

L Ma 1, X Xu 1, S Cui 1, D Sun 1
PMCID: PMC144279  PMID: 10402434

Abstract

The role of heterotrimeric G proteins in pollen germination, tube growth, and signal transduction of extracellular calmodulin (CaM) was examined in lily pollen. Two kinds of antibodies raised against animal Gzalpha, one against an internal sequence and the other against its N terminus, cross-reacted with the same 41-kD protein from lily pollen plasma membrane. This 41-kD protein was also specifically ADP ribosylated by pertussis toxin. Microinjection of the membrane-impermeable G protein agonist GTP-gamma-S into a pollen tube increased its growth rate, whereas microinjection of the membrane-impermeable G protein antagonist GDP-beta-S and the anti-Galpha antibody decreased pollen tube growth. The membrane-permeable G protein agonist cholera toxin stimulated pollen germination and tube growth. Anti-CaM antiserum inhibited pollen germination and tube growth, and this inhibitory effect was completely reversed by cholera toxin. The membrane-permeable heterotrimeric G protein antagonist pertussis toxin completely stopped pollen germination and tube growth. Purified CaM, when added directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in plasma membrane vesicles, and this increase in GTPase activity was completely inhibited by pertussis toxin and the nonhydrolyzable GTP analogs GTP-gamma-S and guanylyl-5'-imidodiphosphate. The GTPase activity in plasma membrane vesicles was also stimulated by cholera toxin. These data suggest that heterotrimeric G proteins may be present in the pollen system where they may be involved in the signal transduction of extracellular CaM and in pollen germination and tube growth.

Full Text

The Full Text of this article is available as a PDF (316.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beffa R., Szell M., Meuwly P., Pay A., Vögeli-Lange R., Métraux J. P., Neuhaus G., Meins F., Jr, Nagy F. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J. 1995 Dec 1;14(23):5753–5761. doi: 10.1002/j.1460-2075.1995.tb00264.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biro R. L., Daye S., Serlin B. S., Terry M. E., Datta N., Sopory S. K., Roux S. J. Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution. Plant Physiol. 1984 Jun;75(2):382–386. doi: 10.1104/pp.75.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowler C., Neuhaus G., Yamagata H., Chua N. H. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell. 1994 Apr 8;77(1):73–81. doi: 10.1016/0092-8674(94)90236-4. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Crocker G., Dawson R. A., Barton C. H., MacNeil S. An extracellular role for calmodulin-like activity in cell proliferation. Biochem J. 1988 Aug 1;253(3):877–884. doi: 10.1042/bj2530877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fairley-Grenot K., Assmann S. M. Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean. Plant Cell. 1991 Sep;3(9):1037–1044. doi: 10.1105/tpc.3.9.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  8. Gonzalo P., Sontag B., Guillot D., Reboud J. P. Fluorometric assay of GTPase activity: application to the couple elongation factor eEF-2-ribosome. Anal Biochem. 1995 Feb 10;225(1):178–180. doi: 10.1006/abio.1995.1133. [DOI] [PubMed] [Google Scholar]
  9. Gotor C., Lam E., Cejudo F. J., Romero L. C. Isolation and analysis of the soybean SGA2 gene (cDNA), encoding a new member of the plant G-protein family of signal transducers. Plant Mol Biol. 1996 Dec;32(6):1227–1234. doi: 10.1007/BF00041411. [DOI] [PubMed] [Google Scholar]
  10. Hendry I. A., Johanson S. O., Heydon K. Retrograde axonal transport of the alpha subunit of the GTP-binding protein Gz to the nucleus of sensory neurons. Brain Res. 1995 Nov 27;700(1-2):157–163. doi: 10.1016/0006-8993(95)00945-m. [DOI] [PubMed] [Google Scholar]
  11. Hepler J. R., Gilman A. G. G proteins. Trends Biochem Sci. 1992 Oct;17(10):383–387. doi: 10.1016/0968-0004(92)90005-t. [DOI] [PubMed] [Google Scholar]
  12. Houston D. S., Carson C. W., Esmon C. T. Endothelial cells and extracellular calmodulin inhibit monocyte tumor necrosis factor release and augment neutrophil elastase release. J Biol Chem. 1997 May 2;272(18):11778–11785. doi: 10.1074/jbc.272.18.11778. [DOI] [PubMed] [Google Scholar]
  13. Ishikawa A., Tsubouchi H., Iwasaki Y., Asahi T. Molecular cloning and characterization of a cDNA for the alpha subunit of a G protein from rice. Plant Cell Physiol. 1995 Mar;36(2):353–359. doi: 10.1093/oxfordjournals.pcp.a078767. [DOI] [PubMed] [Google Scholar]
  14. Iwasaki Y., Kato T., Kaidoh T., Ishikawa A., Asahi T. Characterization of the putative alpha subunit of a heterotrimeric G protein in rice. Plant Mol Biol. 1997 Jul;34(4):563–572. doi: 10.1023/a:1005807010811. [DOI] [PubMed] [Google Scholar]
  15. Jones HD, Smith SJ, Desikan R, Plakidou-Dymock S, Lovegrove A, Hooley R. Heterotrimeric G proteins are implicated in gibberellin induction of a-amylase gene expression in wild oat aleurone . Plant Cell. 1998 Feb;10(2):245–254. doi: 10.1105/tpc.10.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim W. Y., Cheong N. E., Lee D. C., Je D. Y., Bahk J. D., Cho M. J., Lee S. Y. Cloning and sequencing analysis of a full-length cDNA encoding a G protein alpha subunit, SGA1, from soybean. Plant Physiol. 1995 Jul;108(3):1315–1316. doi: 10.1104/pp.108.3.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Legendre L., Heinstein P. F., Low P. S. Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem. 1992 Oct 5;267(28):20140–20147. [PubMed] [Google Scholar]
  19. Lin Y., Wang Y., Zhu J. K., Yang Z. Localization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes. Plant Cell. 1996 Feb;8(2):293–303. doi: 10.1105/tpc.8.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lin Y., Yang Z. Inhibition of Pollen Tube Elongation by Microinjected Anti-Rop1Ps Antibodies Suggests a Crucial Role for Rho-Type GTPases in the Control of Tip Growth. Plant Cell. 1997 Sep;9(9):1647–1659. doi: 10.1105/tpc.9.9.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu M., Yu B., Nakanishi O., Wieland T., Simon M. The Ca2+-dependent binding of calmodulin to an N-terminal motif of the heterotrimeric G protein beta subunit. J Biol Chem. 1997 Jul 25;272(30):18801–18807. doi: 10.1074/jbc.272.30.18801. [DOI] [PubMed] [Google Scholar]
  22. Ma H. GTP-binding proteins in plants: new members of an old family. Plant Mol Biol. 1994 Dec;26(5):1611–1636. doi: 10.1007/BF00016493. [DOI] [PubMed] [Google Scholar]
  23. Ma H., Yanofsky M. F., Meyerowitz E. M. Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1990 May;87(10):3821–3825. doi: 10.1073/pnas.87.10.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mac Neil S., Walker S. W., Senior H. J., Bleehen S. S., Tomlinson S. Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth. J Invest Dermatol. 1984 Jul;83(1):15–19. doi: 10.1111/1523-1747.ep12261637. [DOI] [PubMed] [Google Scholar]
  25. MacNeil S., Dawson R. A., Crocker G., Barton C. H., Hanford L., Metcalfe R., McGurk M., Munro D. S. Extracellular calmodulin and its association with epidermal growth factor in normal human body fluids. J Endocrinol. 1988 Sep;118(3):501–509. doi: 10.1677/joe.0.1180501. [DOI] [PubMed] [Google Scholar]
  26. Neuhaus G., Bowler C., Kern R., Chua N. H. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993 Jun 4;73(5):937–952. doi: 10.1016/0092-8674(93)90272-r. [DOI] [PubMed] [Google Scholar]
  27. Pennington S. R. GTP-binding proteins. 1: heterotrimeric G proteins. Protein Profile. 1994;1(3):169–342. [PubMed] [Google Scholar]
  28. Remgård P., Ekström A. R., Wiklund P., Edström A. Calmodulin and in vitro regenerating frog sciatic nerves: release and extracellular effects. Eur J Neurosci. 1995 Jun 1;7(6):1386–1392. doi: 10.1111/j.1460-9568.1995.tb01130.x. [DOI] [PubMed] [Google Scholar]
  29. Romero L. C., Lam E. Guanine nucleotide binding protein involvement in early steps of phytochrome-regulated gene expression. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1465–1469. doi: 10.1073/pnas.90.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Romero L. C., Sommer D., Gotor C., Song P. S. G-proteins in etiolated Avena seedlings. Possible phytochrome regulation. FEBS Lett. 1991 May 6;282(2):341–346. doi: 10.1016/0014-5793(91)80509-2. [DOI] [PubMed] [Google Scholar]
  31. Seo H. S., Kim H. Y., Jeong J. Y., Lee S. Y., Cho M. J., Bahk J. D. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36). Plant Mol Biol. 1995 Mar;27(6):1119–1131. doi: 10.1007/BF00020885. [DOI] [PubMed] [Google Scholar]
  32. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  33. Taylor Loverine P., Hepler Peter K. POLLEN GERMINATION AND TUBE GROWTH. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):461–491. doi: 10.1146/annurev.arplant.48.1.461. [DOI] [PubMed] [Google Scholar]
  34. Trewavas A. J., Malho R. Signal Perception and Transduction: The Origin of the Phenotype. Plant Cell. 1997 Jul;9(7):1181–1195. doi: 10.1105/tpc.9.7.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Trewavas A., Gilroy S. Signal transduction in plant cells. Trends Genet. 1991 Nov-Dec;7(11-12):356–361. doi: 10.1016/0168-9525(91)90255-o. [DOI] [PubMed] [Google Scholar]
  36. Weiss C. A., White E., Huang H., Ma H. The G protein alpha subunit (GP alpha1) is associated with the ER and the plasma membrane in meristematic cells of Arabidopsis and cauliflower. FEBS Lett. 1997 May 5;407(3):361–367. doi: 10.1016/s0014-5793(97)00378-5. [DOI] [PubMed] [Google Scholar]
  37. Wu W. H., Assmann S. M. A membrane-delimited pathway of G-protein regulation of the guard-cell inward K+ channel. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6310–6314. doi: 10.1073/pnas.91.14.6310. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES