Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jul;11(7):1307–1318. doi: 10.1105/tpc.11.7.1307

ANI1. A sex pheromone-induced gene in ceratopteris gametophytes and its possible role in sex determination.

C K Wen 1, R Smith 1, J A Banks 1
PMCID: PMC144282  PMID: 10402431

Abstract

Antheridiogen (ACE) is a pheromone that is required for the development of male gametophytes in the homosporous fern Ceratopteris richardii. Subtractive hybridization of cDNAs isolated from ACE-treated and non-ACE-treated gametophytes was used to isolate genes that are induced by the pheromone. The expression of one gene, ANI1 (for antheridiogen induced), was induced within 3 hr of ACE treatment, but its expression was transient. Patterns of ANI1 expression in wild-type and mutant gametophytes show that ANI1 expression inversely correlates with the predicted activity of one of the sex-determining genes, TRANSFORMER5 (TRA5). These data suggest that ANI1 transcription or transcript accumulation is directly or indirectly prevented by TRA5 in the absence of ACE and that ACE inactivates the TRA5 gene or its product, leading to the upregulation of ANI1. Cycloheximide (no ACE) induced the expression of ANI1, also indicating that ANI1 expression is subject to negative regulation in the absence of ACE. The sequence and inferred protein structure of ANI1 suggest that it is a novel, extracellular protein. The secreted portion of the ANI1 protein potentially forms a beta barrel with superficial similarities to lipocalins, which bind small hydrophobic molecules such as pheromones, steroids, and odorants. ANI1 may be an extracellular carrier of ACE that is required to initiate the male program of development as the sexual fate of the young gametophyte is determined.

Full Text

The Full Text of this article is available as a PDF (527.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Theologis A. Early genes and auxin action. Plant Physiol. 1996 May;111(1):9–17. doi: 10.1104/pp.111.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banks J. A. Sex-determining genes in the homosporous fern Ceratopteris. Development. 1994 Jul;120(7):1949–1958. doi: 10.1242/dev.120.7.1949. [DOI] [PubMed] [Google Scholar]
  3. Banks J. A. The TRANSFORMER genes of the fern Ceratopteris simultaneously promote meristem and archegonia development and repress antheridia development in the developing gametophyte. Genetics. 1997 Dec;147(4):1885–1897. doi: 10.1093/genetics/147.4.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brandstatter I., Kieber J. J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell. 1998 Jun;10(6):1009–1019. doi: 10.1105/tpc.10.6.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Båvik C. O., Busch C., Eriksson U. Characterization of a plasma retinol-binding protein membrane receptor expressed in the retinal pigment epithelium. J Biol Chem. 1992 Nov 15;267(32):23035–23042. [PubMed] [Google Scholar]
  6. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deléage G., Roux B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng. 1987 Aug-Sep;1(4):289–294. doi: 10.1093/protein/1.4.289. [DOI] [PubMed] [Google Scholar]
  8. Eberle J. R., Banks J. A. Genetic interactions among sex-determining genes in the fern Ceratopteris richardii. Genetics. 1996 Mar;142(3):973–985. doi: 10.1093/genetics/142.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flower D. R. The lipocalin protein family: structure and function. Biochem J. 1996 Aug 15;318(Pt 1):1–14. doi: 10.1042/bj3180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frishman D., Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng. 1996 Feb;9(2):133–142. doi: 10.1093/protein/9.2.133. [DOI] [PubMed] [Google Scholar]
  11. Garnier J., Gibrat J. F., Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996;266:540–553. doi: 10.1016/s0076-6879(96)66034-0. [DOI] [PubMed] [Google Scholar]
  12. Gibrat J. F., Garnier J., Robson B. Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol. 1987 Dec 5;198(3):425–443. doi: 10.1016/0022-2836(87)90292-0. [DOI] [PubMed] [Google Scholar]
  13. Hua J., Meyerowitz E. M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998 Jul 24;94(2):261–271. doi: 10.1016/s0092-8674(00)81425-7. [DOI] [PubMed] [Google Scholar]
  14. Hua J., Sakai H., Nourizadeh S., Chen Q. G., Bleecker A. B., Ecker J. R., Meyerowitz E. M. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 1998 Aug;10(8):1321–1332. doi: 10.1105/tpc.10.8.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science. 1996 Nov 8;274(5289):982–985. doi: 10.1126/science.274.5289.982. [DOI] [PubMed] [Google Scholar]
  16. Kim J., Harter K., Theologis A. Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11786–11791. doi: 10.1073/pnas.94.22.11786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koshiba T., Ballas N., Wong L. M., Theologis A. Transcriptional regulation of PS-IAA4/5 and PS-IAA6 early gene expression by indoleacetic acid and protein synthesis inhibitors in pea (Pisum sativum). J Mol Biol. 1995 Oct 27;253(3):396–413. doi: 10.1006/jmbi.1995.0562. [DOI] [PubMed] [Google Scholar]
  18. Löbel D., Marchese S., Krieger J., Pelosi P., Breer H. Subtypes of odorant-binding proteins--heterologous expression and ligand binding. Eur J Biochem. 1998 Jun 1;254(2):318–324. doi: 10.1046/j.1432-1327.1998.2540318.x. [DOI] [PubMed] [Google Scholar]
  19. Mertz L. M., Rashtchian A. Nucleotide imbalance and polymerase chain reaction: effects on DNA amplification and synthesis of high specific activity radiolabeled DNA probes. Anal Biochem. 1994 Aug 15;221(1):160–165. doi: 10.1006/abio.1994.1392. [DOI] [PubMed] [Google Scholar]
  20. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  22. Rouse D., Mackay P., Stirnberg P., Estelle M., Leyser O. Changes in auxin response from mutations in an AUX/IAA gene. Science. 1998 Feb 27;279(5355):1371–1373. doi: 10.1126/science.279.5355.1371. [DOI] [PubMed] [Google Scholar]
  23. Schaller G. E., Bleecker A. B. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science. 1995 Dec 15;270(5243):1809–1811. doi: 10.1126/science.270.5243.1809. [DOI] [PubMed] [Google Scholar]
  24. Smeland S., Bjerknes T., Malaba L., Eskild W., Norum K. R., Blomhoff R. Tissue distribution of the receptor for plasma retinol-binding protein. Biochem J. 1995 Jan 15;305(Pt 2):419–424. doi: 10.1042/bj3050419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Solovyev V. V., Salamov A. A. Predicting alpha-helix and beta-strand segments of globular proteins. Comput Appl Biosci. 1994 Dec;10(6):661–669. doi: 10.1093/bioinformatics/10.6.661. [DOI] [PubMed] [Google Scholar]
  26. Ulmasov T., Hagen G., Guilfoyle T. J. ARF1, a transcription factor that binds to auxin response elements. Science. 1997 Jun 20;276(5320):1865–1868. doi: 10.1126/science.276.5320.1865. [DOI] [PubMed] [Google Scholar]
  27. Wang Z., Brown D. D. A gene expression screen. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11505–11509. doi: 10.1073/pnas.88.24.11505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Warne T. R., Hickok L. G. Evidence for a gibberellin biosynthetic origin of ceratopteris antheridiogen. Plant Physiol. 1989 Feb;89(2):535–538. doi: 10.1104/pp.89.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamauchi T., Oyama N., Yamane H., Murofushi N., Schraudolf H., Pour M., Furber M., Mander L. N. Identification of Antheridiogens in Lygodium circinnatum and Lygodium flexuosum. Plant Physiol. 1996 Jul;111(3):741–745. doi: 10.1104/pp.111.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES