Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Aug;11(8):1457–1472. doi: 10.1105/tpc.11.8.1457

Multiubiquitin chain binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens.

P A Girod 1, H Fu 1, J P Zryd 1, R D Vierstra 1
PMCID: PMC144285  PMID: 10449580

Abstract

The 26S proteasome, a multisubunit complex, is the primary protease of the ubiquitin-mediated proteolytic system in eukaryotes. We have recently characterized MCB1 (RPN10), a subunit of the 26S complex that has affinity for multiubiquitin chains in vitro and as a result may function as a receptor for ubiquitinated substrates. To define the role of MCB1 further, we analyzed its function in Physcomitrella patens by generating MCB1 gene disruptions using homologous recombination. PpMCB1, which is 50 to 75% similar to orthologs from other eukaryotes, is present in the 26S proteasome complex and has a similar affinity for multiubiquitin chains, using a conserved hydrophobic domain within the C-terminal half of the polypeptide. Unlike yeast Deltamcb1 strains, which grow normally, P. patens Deltamcb1 strains are viable but are under developmental arrest, generating abnormal caulonema that are unable to form buds and gametophores. Treatment with auxin and cytokinin restored bud formation and subsequent partial development of gametophores. Complementation of a Deltamcb1 strain with mutated versions of PpMCB1 revealed that the multiubiquitin chain binding site is not essential for the wild-type phenotype. These results show that MCB1 has an important function in the 26S proteasome of higher order eukaryotes in addition to its ability to bind multiubiquitin chains, and they provide further support for a role of the ubiquitin/26S proteasome proteolytic pathway in plant developmental processes triggered by hormones.

Full Text

The Full Text of this article is available as a PDF (847.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Oeller P. W., Theologis A. Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):326–330. doi: 10.1073/pnas.91.1.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anand G., Yin X., Shahidi A. K., Grove L., Prochownik E. V. Novel regulation of the helix-loop-helix protein Id1 by S5a, a subunit of the 26 S proteasome. J Biol Chem. 1997 Aug 1;272(31):19140–19151. doi: 10.1074/jbc.272.31.19140. [DOI] [PubMed] [Google Scholar]
  3. Bachmair A., Becker F., Masterson R. V., Schell J. Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations and necrotic lesions in a higher plant. EMBO J. 1990 Dec;9(13):4543–4549. doi: 10.1002/j.1460-2075.1990.tb07906.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bachmair A., Becker F., Schell J. Use of a reporter transgene to generate arabidopsis mutants in ubiquitin-dependent protein degradation. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):418–421. doi: 10.1073/pnas.90.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beal R. E., Toscano-Cantaffa D., Young P., Rechsteiner M., Pickart C. M. The hydrophobic effect contributes to polyubiquitin chain recognition. Biochemistry. 1998 Mar 3;37(9):2925–2934. doi: 10.1021/bi972514p. [DOI] [PubMed] [Google Scholar]
  6. Burke T. J., Callis J., Vierstra R. D. Characterization of a polyubiquitin gene from Arabidopsis thaliana. Mol Gen Genet. 1988 Aug;213(2-3):435–443. doi: 10.1007/BF00339613. [DOI] [PubMed] [Google Scholar]
  7. Callis J. Regulation of Protein Degradation. Plant Cell. 1995 Jul;7(7):845–857. doi: 10.1105/tpc.7.7.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chau V., Tobias J. W., Bachmair A., Marriott D., Ecker D. J., Gonda D. K., Varshavsky A. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science. 1989 Mar 24;243(4898):1576–1583. doi: 10.1126/science.2538923. [DOI] [PubMed] [Google Scholar]
  9. Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
  10. Cove D. J., Knight C. D. The Moss Physcomitrella patens, a Model System with Potential for the Study of Plant Reproduction. Plant Cell. 1993 Oct;5(10):1483–1488. doi: 10.1105/tpc.5.10.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deveraux Q., Ustrell V., Pickart C., Rechsteiner M. A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem. 1994 Mar 11;269(10):7059–7061. [PubMed] [Google Scholar]
  12. Ferrell K., Deveraux Q., van Nocker S., Rechsteiner M. Molecular cloning and expression of a multiubiquitin chain binding subunit of the human 26S protease. FEBS Lett. 1996 Feb 26;381(1-2):143–148. doi: 10.1016/0014-5793(96)00101-9. [DOI] [PubMed] [Google Scholar]
  13. Feussner K., Feussner I., Leopold I., Wasternack C. Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato--the first stress-induced UBC of higher plants. FEBS Lett. 1997 Jun 9;409(2):211–215. doi: 10.1016/s0014-5793(97)00509-7. [DOI] [PubMed] [Google Scholar]
  14. Finley D., Ozkaynak E., Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell. 1987 Mar 27;48(6):1035–1046. doi: 10.1016/0092-8674(87)90711-2. [DOI] [PubMed] [Google Scholar]
  15. Finley D., Tanaka K., Mann C., Feldmann H., Hochstrasser M., Vierstra R., Johnston S., Hampton R., Haber J., Mccusker J. Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem Sci. 1998 Jul;23(7):244–245. doi: 10.1016/s0968-0004(98)01222-5. [DOI] [PubMed] [Google Scholar]
  16. Fu H., Doelling J. H., Arendt C. S., Hochstrasser M., Vierstra R. D. Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics. 1998 Jun;149(2):677–692. doi: 10.1093/genetics/149.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fu H., Doelling J. H., Rubin D. M., Vierstra R. D. Structural and functional analysis of the six regulatory particle triple-A ATPase subunits from the Arabidopsis 26S proteasome. Plant J. 1999 Jun;18(5):529–539. doi: 10.1046/j.1365-313x.1999.00479.x. [DOI] [PubMed] [Google Scholar]
  18. Fu H., Sadis S., Rubin D. M., Glickman M., van Nocker S., Finley D., Vierstra R. D. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem. 1998 Jan 23;273(4):1970–1981. doi: 10.1074/jbc.273.4.1970. [DOI] [PubMed] [Google Scholar]
  19. Genschik P, Criqui MC, Parmentier Y, Derevier A, Fleck J. Cell cycle -dependent proteolysis in plants. Identification Of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor mg132 . Plant Cell. 1998 Dec;10(12):2063–2076. doi: 10.1105/tpc.10.12.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Girke T., Schmidt H., Zähringer U., Reski R., Heinz E. Identification of a novel delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 1998 Jul;15(1):39–48. doi: 10.1046/j.1365-313x.1998.00178.x. [DOI] [PubMed] [Google Scholar]
  21. Glickman M. H., Rubin D. M., Coux O., Wefes I., Pfeifer G., Cjeka Z., Baumeister W., Fried V. A., Finley D. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell. 1998 Sep 4;94(5):615–623. doi: 10.1016/s0092-8674(00)81603-7. [DOI] [PubMed] [Google Scholar]
  22. Glickman M. H., Rubin D. M., Fried V. A., Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol. 1998 Jun;18(6):3149–3162. doi: 10.1128/mcb.18.6.3149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Groll M., Ditzel L., Löwe J., Stock D., Bochtler M., Bartunik H. D., Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. 1997 Apr 3;386(6624):463–471. doi: 10.1038/386463a0. [DOI] [PubMed] [Google Scholar]
  24. Haracska L., Udvardy A. Cloning and sequencing a non-ATPase subunit of the regulatory complex of the Drosophila 26S protease. Eur J Biochem. 1995 Aug 1;231(3):720–725. doi: 10.1111/j.1432-1033.1995.tb20753.x. [DOI] [PubMed] [Google Scholar]
  25. Haracska L., Udvardy A. Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of the Drosophila 26S protease. FEBS Lett. 1997 Jul 28;412(2):331–336. doi: 10.1016/s0014-5793(97)00808-9. [DOI] [PubMed] [Google Scholar]
  26. Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. [DOI] [PubMed] [Google Scholar]
  27. Ingram G. C., Goodrich J., Wilkinson M. D., Simon R., Haughn G. W., Coen E. S. Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell. 1995 Sep;7(9):1501–1510. doi: 10.1105/tpc.7.9.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jack T., Fox G. L., Meyerowitz E. M. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell. 1994 Feb 25;76(4):703–716. doi: 10.1016/0092-8674(94)90509-6. [DOI] [PubMed] [Google Scholar]
  29. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Johnson E. S., Ma P. C., Ota I. M., Varshavsky A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem. 1995 Jul 21;270(29):17442–17456. doi: 10.1074/jbc.270.29.17442. [DOI] [PubMed] [Google Scholar]
  31. King R. W., Deshaies R. J., Peters J. M., Kirschner M. W. How proteolysis drives the cell cycle. Science. 1996 Dec 6;274(5293):1652–1659. doi: 10.1126/science.274.5293.1652. [DOI] [PubMed] [Google Scholar]
  32. Krysan P. J., Young J. C., Tax F., Sussman M. R. Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8145–8150. doi: 10.1073/pnas.93.15.8145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Long D., Coupland G. Transposon tagging with Ac/Ds in Arabidopsis. Methods Mol Biol. 1998;82:315–328. doi: 10.1385/0-89603-391-0:315. [DOI] [PubMed] [Google Scholar]
  34. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  35. Mathew A., Mathur S. K., Morimoto R. I. Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol. 1998 Sep;18(9):5091–5098. doi: 10.1128/mcb.18.9.5091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McCafferty H. R., Talbot N. J. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonisation. Curr Genet. 1998 May;33(5):352–361. doi: 10.1007/s002940050347. [DOI] [PubMed] [Google Scholar]
  37. Miao Z. H., Lam E. Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J. 1995 Feb;7(2):359–365. doi: 10.1046/j.1365-313x.1995.7020359.x. [DOI] [PubMed] [Google Scholar]
  38. Parmentier Y., Bouchez D., Fleck J., Genschik P. The 20S proteasome gene family in Arabidopsis thaliana. FEBS Lett. 1997 Oct 27;416(3):281–285. doi: 10.1016/s0014-5793(97)01228-3. [DOI] [PubMed] [Google Scholar]
  39. Potuschak T., Stary S., Schlögelhofer P., Becker F., Nejinskaia V., Bachmair A. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7904–7908. doi: 10.1073/pnas.95.14.7904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ruegger M., Dewey E., Gray W. M., Hobbie L., Turner J., Estelle M. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 1998 Jan 15;12(2):198–207. doi: 10.1101/gad.12.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schaefer D. G., Zrÿd J. P. Efficient gene targeting in the moss Physcomitrella patens. Plant J. 1997 Jun;11(6):1195–1206. doi: 10.1046/j.1365-313x.1997.11061195.x. [DOI] [PubMed] [Google Scholar]
  42. Schaefer D., Zryd J. P., Knight C. D., Cove D. J. Stable transformation of the moss Physcomitrella patens. Mol Gen Genet. 1991 May;226(3):418–424. doi: 10.1007/BF00260654. [DOI] [PubMed] [Google Scholar]
  43. Seufert W., Jentsch S. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 1990 Feb;9(2):543–550. doi: 10.1002/j.1460-2075.1990.tb08141.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shirley B. W., Goodman H. M. An Arabidopsis gene homologous to mammalian and insect genes encoding the largest proteasome subunit. Mol Gen Genet. 1993 Dec;241(5-6):586–594. doi: 10.1007/BF00279901. [DOI] [PubMed] [Google Scholar]
  45. Strepp R., Scholz S., Kruse S., Speth V., Reski R. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4368–4373. doi: 10.1073/pnas.95.8.4368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12142–12149. doi: 10.1073/pnas.93.22.12142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vierstra R. D. Proteolysis in plants: mechanisms and functions. Plant Mol Biol. 1996 Oct;32(1-2):275–302. doi: 10.1007/BF00039386. [DOI] [PubMed] [Google Scholar]
  48. Xie D. X., Feys B. F., James S., Nieto-Rostro M., Turner J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science. 1998 May 15;280(5366):1091–1094. doi: 10.1126/science.280.5366.1091. [DOI] [PubMed] [Google Scholar]
  49. Young P., Deveraux Q., Beal R. E., Pickart C. M., Rechsteiner M. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J Biol Chem. 1998 Mar 6;273(10):5461–5467. doi: 10.1074/jbc.273.10.5461. [DOI] [PubMed] [Google Scholar]
  50. van Nocker S., Deveraux Q., Rechsteiner M., Vierstra R. D. Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):856–860. doi: 10.1073/pnas.93.2.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. van Nocker S., Sadis S., Rubin D. M., Glickman M., Fu H., Coux O., Wefes I., Finley D., Vierstra R. D. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol. 1996 Nov;16(11):6020–6028. doi: 10.1128/mcb.16.11.6020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. van Nocker S., Vierstra R. D. Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. J Biol Chem. 1993 Nov 25;268(33):24766–24773. [PubMed] [Google Scholar]
  53. van Nocker S., Walker J. M., Vierstra R. D. The Arabidopsis thaliana UBC7/13/14 genes encode a family of multiubiquitin chain-forming E2 enzymes. J Biol Chem. 1996 May 24;271(21):12150–12158. doi: 10.1074/jbc.271.21.12150. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES