Abstract
Polyadenylation of nucleus-encoded transcripts has a well-defined role in gene expression. The extent and function of polyadenylation in organelles and prokaryotic systems, however, are less well documented. Recent reports of polyadenylation-mediated RNA destabilization in Escherichia coli and in vascular plant chloroplasts prompted us to look for polyadenylation in plant mitochondria. Here, we report the use of reverse transcription-polymerase chain reaction to map multiple polyadenylate addition sites in maize mitochondrial cox2 transcripts. The lack of sequence conservation surrounding these sites suggests that polyadenylation may occur at many 3' termini created by endoribonucleolytic and/or exoribonucleolytic activities, including those activities involved in 3' end maturation. Endogenous transcripts could be efficiently polyadenylated in vitro by using maize mitochondrial lysates with an activity that added AMP more efficiently than GMP. Polyadenylated substrates were tested for stability in maize mitochondrial S100 extracts, and we found that, compared with nonpolyadenylated RNAs, the polyadenylated substrates were less stable. Taken together with the low abundance of polyadenylated RNAs in maize mitochondria, our results are consistent with a degradation-related process. The fact that polyadenylation does not dramatically destabilize plant mitochondrial transcripts, at least in vitro, is in agreement with results obtained for animal mitochondria but differs from those obtained for chloroplasts and E. coli. Because fully edited, partially edited, and unedited transcripts were found among the cloned polyadenylated cox2 cDNAs, we conclude that RNA editing and polyadenylation are independent processes in maize mitochondria.
Full Text
The Full Text of this article is available as a PDF (863.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avadhani N. G. Messenger ribonucleic acid metabolism in mammalian mitochondria: relationship between the decay of mitochondrial mRNA and their poly(A). Biochemistry. 1979 Jun 12;18(12):2673–2678. doi: 10.1021/bi00579a038. [DOI] [PubMed] [Google Scholar]
- Bachmann B., Lüke W., Hunsmann G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 1990 Mar 11;18(5):1309–1309. doi: 10.1093/nar/18.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bariola P. A., Howard C. J., Taylor C. B., Verburg M. T., Jaglan V. D., Green P. J. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J. 1994 Nov;6(5):673–685. doi: 10.1046/j.1365-313x.1994.6050673.x. [DOI] [PubMed] [Google Scholar]
- Bellaoui M., Pelletier G., Budar F. The steady-state level of mRNA from the Ogura cytoplasmic male sterility locus in Brassica cybrids is determined post-transcriptionally by its 3' region. EMBO J. 1997 Aug 15;16(16):5057–5068. doi: 10.1093/emboj/16.16.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhat G. J., Souza A. E., Feagin J. E., Stuart K. Transcript-specific developmental regulation of polyadenylation in Trypanosoma brucei mitochondria. Mol Biochem Parasitol. 1992 Jun;52(2):231–240. doi: 10.1016/0166-6851(92)90055-o. [DOI] [PubMed] [Google Scholar]
- Brewer G., Ross J. Poly(A) shortening and degradation of the 3' A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol Cell Biol. 1988 Apr;8(4):1697–1708. doi: 10.1128/mcb.8.4.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cermakian N., Ikeda T. M., Cedergren R., Gray M. W. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res. 1996 Feb 15;24(4):648–654. doi: 10.1093/nar/24.4.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang C. C., Sheen J., Bligny M., Niwa Y., Lerbs-Mache S., Stern D. B. Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell. 1999 May;11(5):911–926. doi: 10.1105/tpc.11.5.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dombrowski S., Brennicke A., Binder S. 3'-Inverted repeats in plant mitochondrial mRNAs are processing signals rather than transcription terminators. EMBO J. 1997 Aug 15;16(16):5069–5076. doi: 10.1093/emboj/16.16.5069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fauron C. M., Havlik M. The BamHI, XhoI, SmaI restriction enzyme maps of the normal maize mitochondrial genome genotype B37. Nucleic Acids Res. 1988 Nov 11;16(21):10395–10396. doi: 10.1093/nar/16.21.10395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feagin J. E., Jasmer D. P., Stuart K. Apocytochrome b and other mitochondrial DNA sequences are differentially expressed during the life cycle of Trypanosoma brucei. Nucleic Acids Res. 1985 Jun 25;13(12):4577–4596. doi: 10.1093/nar/13.12.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finnegan P. M., Brown G. G. Transcriptional and Post-Transcriptional Regulation of RNA Levels in Maize Mitochondria. Plant Cell. 1990 Jan;2(1):71–83. doi: 10.1105/tpc.2.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox T. D., Leaver C. J. The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell. 1981 Nov;26(3 Pt 1):315–323. doi: 10.1016/0092-8674(81)90200-2. [DOI] [PubMed] [Google Scholar]
- Gelfand R., Attardi G. Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable. Mol Cell Biol. 1981 Jun;1(6):497–511. doi: 10.1128/mcb.1.6.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
- Groot G. S., Flavell R. A., Van Ommen G. J., Grivell L. A. Yeast mitochondrial RNA does not contain poly(A) Nature. 1974 Nov 8;252(5479):167–169. doi: 10.1038/252167a0. [DOI] [PubMed] [Google Scholar]
- Hajnsdorf E., Braun F., Haugel-Nielsen J., Le Derout J., Régnier P. Multiple degradation pathways of the rpsO mRNA of Escherichia coli. RNase E interacts with the 5' and 3' extremities of the primary transcript. Biochimie. 1996;78(6):416–424. doi: 10.1016/0300-9084(96)84748-1. [DOI] [PubMed] [Google Scholar]
- Hanic-Joyce P. J., Gray M. W. Processing of transfer RNA precursors in a wheat mitochondrial extract. J Biol Chem. 1990 Aug 15;265(23):13782–13791. [PubMed] [Google Scholar]
- Haugel-Nielsen J., Hajnsdorf E., Regnier P. The rpsO mRNA of Escherichia coli is polyadenylated at multiple sites resulting from endonucleolytic processing and exonucleolytic degradation. EMBO J. 1996 Jun 17;15(12):3144–3152. [PMC free article] [PubMed] [Google Scholar]
- Hayes R., Kudla J., Gruissem W. Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem Sci. 1999 May;24(5):199–202. doi: 10.1016/s0968-0004(99)01388-2. [DOI] [PubMed] [Google Scholar]
- Hedtke B., Börner T., Weihe A. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science. 1997 Aug 8;277(5327):809–811. doi: 10.1126/science.277.5327.809. [DOI] [PubMed] [Google Scholar]
- Hendler F. J., Padmanaban G., Patzer J., Ryan R., Rabinowitz M. Yeast mitochondrial RNA contains a short polyadenylic acid segment. Nature. 1975 Nov 27;258(5533):357–359. doi: 10.1038/258357a0. [DOI] [PubMed] [Google Scholar]
- Hirsch M., Penman S. Mitochondrial polyadenylic acid-containing RNA: localization and characterization. J Mol Biol. 1973 Nov 5;80(3):379–391. doi: 10.1016/0022-2836(73)90410-5. [DOI] [PubMed] [Google Scholar]
- Kaleikau E. K., André C. P., Walbot V. Structure and expression of the rice mitochondrial apocytochrome b gene (cob-1) and pseudogene (cob-2). Curr Genet. 1992 Dec;22(6):463–470. doi: 10.1007/BF00326411. [DOI] [PubMed] [Google Scholar]
- Kempken F., Howad W. Mitochondrial RNA editing is sequence specific and independent of transcript abundance in Sorghum bicolor. Curr Genet. 1996 Jul 31;30(2):186–189. doi: 10.1007/s002940050119. [DOI] [PubMed] [Google Scholar]
- Koslowsky D. J., Yahampath G. Mitochondrial mRNA 3' cleavage/polyadenylation and RNA editing in Trypanosoma brucei are independent events. Mol Biochem Parasitol. 1997 Dec 1;90(1):81–94. doi: 10.1016/s0166-6851(97)00133-3. [DOI] [PubMed] [Google Scholar]
- Kudla J., Hayes R., Gruissem W. Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J. 1996 Dec 16;15(24):7137–7146. [PMC free article] [PubMed] [Google Scholar]
- Li Q., Hunt A. G. The Polyadenylation of RNA in Plants. Plant Physiol. 1997 Oct;115(2):321–325. doi: 10.1104/pp.115.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z., Pandit S., Deutscher M. P. Polyadenylation of stable RNA precursors in vivo. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12158–12162. doi: 10.1073/pnas.95.21.12158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisitsky I., Klaff P., Schuster G. Addition of destabilizing poly (A)-rich sequences to endonuclease cleavage sites during the degradation of chloroplast mRNA. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13398–13403. doi: 10.1073/pnas.93.23.13398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisitsky I., Kotler A., Schuster G. The mechanism of preferential degradation of polyadenylated RNA in the chloroplast. The exoribonuclease 100RNP/polynucleotide phosphorylase displays high binding affinity for poly(A) sequence. J Biol Chem. 1997 Jul 11;272(28):17648–17653. doi: 10.1074/jbc.272.28.17648. [DOI] [PubMed] [Google Scholar]
- Lonsdale D. M., Hodge T. P., Fauron C. M. The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res. 1984 Dec 21;12(24):9249–9261. doi: 10.1093/nar/12.24.9249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu B., Hanson M. R. A single nuclear gene specifies the abundance and extent of RNA editing of a plant mitochondrial transcript. Nucleic Acids Res. 1992 Nov 11;20(21):5699–5703. doi: 10.1093/nar/20.21.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maier R. M., Zeltz P., Kössel H., Bonnard G., Gualberto J. M., Grienenberger J. M. RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol. 1996 Oct;32(1-2):343–365. doi: 10.1007/BF00039390. [DOI] [PubMed] [Google Scholar]
- Marchfelder A., Brennicke A. Characterization and partial purification of tRNA processing activities from potato mitochondria. Plant Physiol. 1994 Aug;105(4):1247–1254. doi: 10.1104/pp.105.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulligan R. M., Leon P., Walbot V. Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol. 1991 Jan;11(1):533–543. doi: 10.1128/mcb.11.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojala D., Montoya J., Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981 Apr 9;290(5806):470–474. doi: 10.1038/290470a0. [DOI] [PubMed] [Google Scholar]
- Pereira de Souza A., Jubier M. F., Delcher E., Lancelin D., Lejeune B. A trans-splicing model for the expression of the tripartite nad5 gene in wheat and maize mitochondria. Plant Cell. 1991 Dec;3(12):1363–1378. doi: 10.1105/tpc.3.12.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapp W. D., Stern D. B. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene. EMBO J. 1992 Mar;11(3):1065–1073. doi: 10.1002/j.1460-2075.1992.tb05145.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose K. M., Morris H. P., Jacob S. T. Mitochondrial poly(A) polymerase from a poorly differentiated hepatoma: purification and characteristics. Biochemistry. 1975 Mar 11;14(5):1025–1032. doi: 10.1021/bi00676a022. [DOI] [PubMed] [Google Scholar]
- Rothnie H. M. Plant mRNA 3'-end formation. Plant Mol Biol. 1996 Oct;32(1-2):43–61. doi: 10.1007/BF00039376. [DOI] [PubMed] [Google Scholar]
- Sarkar N. Polyadenylation of mRNA in prokaryotes. Annu Rev Biochem. 1997;66:173–197. doi: 10.1146/annurev.biochem.66.1.173. [DOI] [PubMed] [Google Scholar]
- Stern D. B., Dyer T. A., Lonsdale D. M. Organization of the mitochondrial ribosomal RNA genes of maize. Nucleic Acids Res. 1982 Jun 11;10(11):3333–3340. doi: 10.1093/nar/10.11.3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D. B., Newton K. J. Isolation of plant mitochondrial RNA. Methods Enzymol. 1986;118:488–496. doi: 10.1016/0076-6879(86)18095-5. [DOI] [PubMed] [Google Scholar]
- Tracy R. L., Stern D. B. Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet. 1995 Aug;28(3):205–216. doi: 10.1007/BF00309779. [DOI] [PubMed] [Google Scholar]
- Wahle E., Keller W. The biochemistry of 3'-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem. 1992;61:419–440. doi: 10.1146/annurev.bi.61.070192.002223. [DOI] [PubMed] [Google Scholar]
- Wilson R. K., Hanson M. R. Preferential RNA editing at specific sites within transcripts of two plant mitochondrial genes does not depend on transcriptional context or nuclear genotype. Curr Genet. 1996 Dec;30(6):502–508. doi: 10.1007/s002940050162. [DOI] [PubMed] [Google Scholar]
- Xu F., Lin-Chao S., Cohen S. N. The Escherichia coli pcnB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6756–6760. doi: 10.1073/pnas.90.14.6756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang A. J., Mulligan R. M. RNA editing intermediates of cox2 transcripts in maize mitochondria. Mol Cell Biol. 1991 Aug;11(8):4278–4281. doi: 10.1128/mcb.11.8.4278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yen Y., Green P. J. Identification and Properties of the Major Ribonucleases of Arabidopsis thaliana. Plant Physiol. 1991 Dec;97(4):1487–1493. doi: 10.1104/pp.97.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young D. A., Allen R. L., Harvey A. J., Lonsdale D. M. Characterization of a gene encoding a single-subunit bacteriophage-type RNA polymerase from maize which is alternatively spliced. Mol Gen Genet. 1998 Oct;260(1):30–37. doi: 10.1007/s004380050867. [DOI] [PubMed] [Google Scholar]
- Yuckenberg P. D., Phillips S. L. Oligoadenylate is present in the mitochondrial RNA of Saccharomyces cerevisiae. Mol Cell Biol. 1982 Apr;2(4):450–456. doi: 10.1128/mcb.2.4.450. [DOI] [PMC free article] [PubMed] [Google Scholar]