Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Aug;11(8):1473–1484. doi: 10.1105/tpc.11.8.1473

Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri.

E Ebnet 1, M Fischer 1, W Deininger 1, P Hegemann 1
PMCID: PMC144291  PMID: 10449581

Abstract

Somatic cells of the multicellular alga Volvox carteri contain a visual rhodopsin that controls the organism's phototactic behavior via two independent photoreceptor currents. Here, we report the identification of an opsinlike gene, designated as volvoxopsin (vop). The encoded protein exhibits homologies to the opsin of the unicellular alga Chlamydomonas reinhardtii (chlamyopsin) and to the entire animal opsin family, thus providing new perspectives on opsin evolution. Volvoxopsin accumulates within the eyes of somatic cells. However, the vop transcript is detectable only in the reproductive eyeless gonidia and embryos. vop mRNA levels increase 400-fold during embryogenesis, when embryos develop in darkness, whereas the vop transcript does not accumulate when embryos develop in the light. An antisense transformant, T3, was generated. This transformant produces 10 times less volvoxopsin than does the wild type. In T3, the vop transcript is virtually absent, whereas the antisense transcript is predominant and light regulated. It follows that vop expression is under light-dependent transcriptional control but that volvoxopsin itself is not the regulatory photoreceptor. Transformant T3 is phototactic, but its phototactic sensitivity is reduced 10-fold relative to the parental wild-type strain HK10. Thus, we offer definitive genetic evidence that a rhodopsin serves as the photoreceptor for phototaxis in a green alga.

Full Text

The Full Text of this article is available as a PDF (563.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. R., Stamer K. A., Miller J. K., McNally J. G., Kirk M. M., Kirk D. L. Patterns of organellar and nuclear inheritance among progeny of two geographically isolated strains of Volvox carteri. Curr Genet. 1990 Aug;18(2):141–153. doi: 10.1007/BF00312602. [DOI] [PubMed] [Google Scholar]
  2. Beckmann M., Hegemann P. In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochemistry. 1991 Apr 16;30(15):3692–3697. doi: 10.1021/bi00229a014. [DOI] [PubMed] [Google Scholar]
  3. Braun F. J., Hegemann P. Two light-activated conductances in the eye of the green alga Volvox carteri. Biophys J. 1999 Mar;76(3):1668–1678. doi: 10.1016/S0006-3495(99)77326-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Deininger W., Kröger P., Hegemann U., Lottspeich F., Hegemann P. Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J. 1995 Dec 1;14(23):5849–5858. doi: 10.1002/j.1460-2075.1995.tb00273.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fabry S., Jacobsen A., Huber H., Palme K., Schmitt R. Structure, expression, and phylogenetic relationships of a family of ypt genes encoding small G-proteins in the green alga Volvox carteri. Curr Genet. 1993 Sep;24(3):229–240. doi: 10.1007/BF00351797. [DOI] [PubMed] [Google Scholar]
  7. Ficca A. G., Testa L., Tocchini Valentini G. P. The human beta 2-adrenergic receptor expressed in Schizosaccharomyces pombe retains its pharmacological properties. FEBS Lett. 1995 Dec 18;377(2):140–144. doi: 10.1016/0014-5793(95)01330-x. [DOI] [PubMed] [Google Scholar]
  8. Foster K. W., Saranak J., Patel N., Zarilli G., Okabe M., Kline T., Nakanishi K. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature. 1984 Oct 25;311(5988):756–759. doi: 10.1038/311756a0. [DOI] [PubMed] [Google Scholar]
  9. Foster K. W., Smyth R. D. Light Antennas in phototactic algae. Microbiol Rev. 1980 Dec;44(4):572–630. doi: 10.1128/mr.44.4.572-630.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hallmann A., Rappel A., Sumper M. Gene replacement by homologous recombination in the multicellular green alga Volvox carteri. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7469–7474. doi: 10.1073/pnas.94.14.7469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hegemann P., Hegemann U., Foster K. W. Reversible bleaching of Chlamydomonas reinhardtii rhodopsin in vivo. Photochem Photobiol. 1988 Jul;48(1):123–128. doi: 10.1111/j.1751-1097.1988.tb02796.x. [DOI] [PubMed] [Google Scholar]
  12. Holland E. M., Braun F. J., Nonnengässer C., Harz H., Hegemann P. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions. Biophys J. 1996 Feb;70(2):924–931. doi: 10.1016/S0006-3495(96)79635-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huber A., Schulz S., Bentrop J., Groell C., Wolfrum U., Paulsen R. Molecular cloning of Drosophila Rh6 rhodopsin: the visual pigment of a subset of R8 photoreceptor cells. FEBS Lett. 1997 Apr 7;406(1-2):6–10. doi: 10.1016/s0014-5793(97)00210-x. [DOI] [PubMed] [Google Scholar]
  14. Huber A., Smith D. P., Zuker C. S., Paulsen R. Opsin of Calliphora peripheral photoreceptors R1-6. Homology with Drosophila Rh1 and posttranslational processing. J Biol Chem. 1990 Oct 15;265(29):17906–17910. [PubMed] [Google Scholar]
  15. Kirk D. L., Harper J. F. Genetic, biochemical, and molecular approaches to Volvox development and evolution. Int Rev Cytol. 1986;99:217–293. doi: 10.1016/s0074-7696(08)61428-x. [DOI] [PubMed] [Google Scholar]
  16. Kirk D. L., Kaufman M. R., Keeling R. M., Stamer K. A. Genetic and cytological control of the asymmetric divisions that pattern the Volvox embryo. Dev Suppl. 1991;1:67–82. [PubMed] [Google Scholar]
  17. Kirk M. M., Kirk D. L. Translational regulation of protein synthesis, in response to light, at a critical stage of Volvox development. Cell. 1985 Jun;41(2):419–428. doi: 10.1016/s0092-8674(85)80015-5. [DOI] [PubMed] [Google Scholar]
  18. Kröger P., Hegemann P. Photophobic responses and phototaxis in Chlamydomonas are triggered by a single rhodopsin photoreceptor. FEBS Lett. 1994 Mar 14;341(1):5–9. doi: 10.1016/0014-5793(94)80229-7. [DOI] [PubMed] [Google Scholar]
  19. Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 1993 Jan 15;123(1):127–130. doi: 10.1016/0378-1119(93)90551-d. [DOI] [PubMed] [Google Scholar]
  20. Nathans J., Hogness D. S. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 1983 Oct;34(3):807–814. doi: 10.1016/0092-8674(83)90537-8. [DOI] [PubMed] [Google Scholar]
  21. Schiedlmeier B., Schmitt R., Müller W., Kirk M. M., Gruber H., Mages W., Kirk D. L. Nuclear transformation of Volvox carteri. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5080–5084. doi: 10.1073/pnas.91.11.5080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stacy R. A., Nordeng T. W., Culiáez-Macià F. A., Aalen R. B. The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. Plant J. 1999 Jul;19(1):1–8. doi: 10.1046/j.1365-313x.1999.00488.x. [DOI] [PubMed] [Google Scholar]
  23. Tamm S. Ca2+ channels and signalling in cilia and flagella. Trends Cell Biol. 1994 Sep;4(9):305–310. doi: 10.1016/0962-8924(94)90226-7. [DOI] [PubMed] [Google Scholar]
  24. Zuker C. S., Cowman A. F., Rubin G. M. Isolation and structure of a rhodopsin gene from D. melanogaster. Cell. 1985 Apr;40(4):851–858. doi: 10.1016/0092-8674(85)90344-7. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES