Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Aug;11(8):1579–1590. doi: 10.1105/tpc.11.8.1579

Blue light-directed destabilization of the pea Lhcb1*4 transcript depends on sequences within the 5' untranslated region.

M B Anderson 1, K Folta 1, K M Warpeha 1, J Gibbons 1, J Gao 1, L S Kaufman 1
PMCID: PMC144292  PMID: 10449589

Abstract

Pea seedlings grown in continuous red light accumulate significant levels of Lhcb1 RNA. When treated with a single pulse of blue light with a total fluence >10(4) micromol m(-2), the rate of Lhcb1 transcription is increased, whereas the level of Lhcb1 RNA is unchanged from that in control seedlings. This RNA destabilization response occurs in developing leaves but not in the apical bud. The data presented here indicate that the same response occurs in the cotyledons of etiolated Arabidopsis seedlings. The blue light-induced destabilization response persists in long hypocotyl hy4 and phytochrome phyA, phyB, and hy1 mutants as well as in far-red light-grown seedlings, indicating that neither CRY1 (encoded by the hy4 locus) nor phytochrome is the sole photoreceptor. Studies with transgenic plants indicate that the destabilization element in the pea Lhcb1*4 transcript resides completely in the 5' untranslated region.

Full Text

The Full Text of this article is available as a PDF (920.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abler M. L., Green P. J. Control of mRNA stability in higher plants. Plant Mol Biol. 1996 Oct;32(1-2):63–78. doi: 10.1007/BF00039377. [DOI] [PubMed] [Google Scholar]
  2. Barnes S. A., Nishizawa N. K., Quaggio R. B., Whitelam G. C., Chua N. H. Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell. 1996 Apr;8(4):601–615. doi: 10.1105/tpc.8.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brusslan J. A., Tobin E. M. Light-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7791–7795. doi: 10.1073/pnas.89.16.7791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caspar T., Quail P. H. Promoter and leader regions involved in the expression of the Arabidopsis ferredoxin A gene. Plant J. 1993 Jan;3(1):161–174. doi: 10.1046/j.1365-313x.1993.t01-8-00999.x. [DOI] [PubMed] [Google Scholar]
  5. Decker C. J., Parker R. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci. 1994 Aug;19(8):336–340. doi: 10.1016/0968-0004(94)90073-6. [DOI] [PubMed] [Google Scholar]
  6. Dickey L. F., Gallo-Meagher M., Thompson W. F. Light regulatory sequences are located within the 5' portion of the Fed-1 message sequence. EMBO J. 1992 Jun;11(6):2311–2317. doi: 10.1002/j.1460-2075.1992.tb05290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickey L. F., Nguyen T. T., Allen G. C., Thompson W. F. Light modulation of ferredoxin mRNA abundance requires an open reading frame. Plant Cell. 1994 Aug;6(8):1171–1176. doi: 10.1105/tpc.6.8.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dickey L. F., Petracek M. E., Nguyen T. T., Hansen E. R., Thompson W. F. Light regulation of Fed-1 mRNA requires an element in the 5' untranslated region and correlates with differential polyribosome association. Plant Cell. 1998 Mar;10(3):475–484. doi: 10.1105/tpc.10.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elliott R. C., Pedersen T. J., Fristensky B., White M. J., Dickey L. F., Thompson W. F. Characterization of a single copy gene encoding ferredoxin I from pea. Plant Cell. 1989 Jul;1(7):681–690. doi: 10.1105/tpc.1.7.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Folta K. M., Kaufman L. S. Regions of the pea Lhcb1*4 promoter necessary for blue-light regulation in transgenic Arabidopsis. Plant Physiol. 1999 Jul;120(3):747–756. doi: 10.1104/pp.120.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Franco A. R., Gee M. A., Guilfoyle T. J. Induction and superinduction of auxin-responsive mRNAs with auxin and protein synthesis inhibitors. J Biol Chem. 1990 Sep 15;265(26):15845–15849. [PubMed] [Google Scholar]
  12. Gao J., Kaufman L. S. Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene. Plant Physiol. 1994 Apr;104(4):1251–1257. doi: 10.1104/pp.104.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gil P., Liu Y., Orbović V., Verkamp E., Poff K. L., Green P. J. Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis. Plant Physiol. 1994 Feb;104(2):777–784. doi: 10.1104/pp.104.2.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green P. J. Control of mRNA Stability in Higher Plants. Plant Physiol. 1993 Aug;102(4):1065–1070. doi: 10.1104/pp.102.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hajdukiewicz P., Svab Z., Maliga P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol. 1994 Sep;25(6):989–994. doi: 10.1007/BF00014672. [DOI] [PubMed] [Google Scholar]
  16. Kaufman L. S. Transduction of Blue-Light Signals. Plant Physiol. 1993 Jun;102(2):333–337. doi: 10.1104/pp.102.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leutwiler L. S., Meyerowitz E. M., Tobin E. M. Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 1986 May 27;14(10):4051–4064. doi: 10.1093/nar/14.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liang X., Abel S., Keller J. A., Shen N. F., Theologis A. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11046–11050. doi: 10.1073/pnas.89.22.11046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marcotte W. R., Jr, Russell S. H., Quatrano R. S. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell. 1989 Oct;1(10):969–976. doi: 10.1105/tpc.1.10.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marrs K. A., Kaufman L. S. Blue-light regulation of transcription for nuclear genes in pea. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4492–4495. doi: 10.1073/pnas.86.12.4492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McClure B. A., Guilfoyle T. Rapid redistribution of auxin-regulated RNAs during gravitropism. Science. 1989 Jan 6;243:91–93. doi: 10.1126/science.11540631. [DOI] [PubMed] [Google Scholar]
  22. Newman T. C., Ohme-Takagi M., Taylor C. B., Green P. J. DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell. 1993 Jun;5(6):701–714. doi: 10.1105/tpc.5.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nickelsen J., Fleischmann M., Boudreau E., Rahire M., Rochaix J. D. Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in Chlamydomonas. Plant Cell. 1999 May;11(5):957–970. doi: 10.1105/tpc.11.5.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Petracek M. E., Dickey L. F., Nguyen T. T., Gatz C., Sowinski D. A., Allen G. C., Thompson W. F. Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):9009–9013. doi: 10.1073/pnas.95.15.9009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reed J. W., Nagatani A., Elich T. D., Fagan M., Chory J. Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol. 1994 Apr;104(4):1139–1149. doi: 10.1104/pp.104.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sachs A. B. Messenger RNA degradation in eukaryotes. Cell. 1993 Aug 13;74(3):413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
  27. Thompson D. M., Meagher R. B. Transcriptional and post-transcriptional processes regulate expression of RNA encoding the small subunit of ribulose-1,5-biphosphate carboxylase differently in petunia and in soybean. Nucleic Acids Res. 1990 Jun 25;18(12):3621–3629. doi: 10.1093/nar/18.12.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tilghman J. A., Gao J., Anderson M. B., Kaufman L. S. Correct blue-light regulation of pea Lhcb genes in an Arabidopsis background. Plant Mol Biol. 1997 Oct;35(3):293–302. doi: 10.1023/a:1005842503952. [DOI] [PubMed] [Google Scholar]
  29. Warpeha K. M., Kaufman L. S. Two distinct blue-light responses regulate epicotyl elongation in pea. Plant Physiol. 1990 Feb;92(2):495–499. doi: 10.1104/pp.92.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Warpeha K. M., Marrs K. A., Kaufman L. S. Blue-Light Regulation of Specific Transcript Levels in Pisum sativum: Fluence-Response, Time-Course, and Reciprocity Characteristics. Plant Physiol. 1989 Nov;91(3):1030–1035. doi: 10.1104/pp.91.3.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. White M. J., Kaufman L. S., Horwitz B. A., Briggs W. R., Thompson W. F. Individual Members of the Cab Gene Family Differ Widely in Fluence Response. Plant Physiol. 1995 Jan;107(1):161–165. doi: 10.1104/pp.107.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Williamson J. D., Quatrano R. S. ABA-Regulation of Two Classes of Embryo-Specific Sequences in Mature Wheat Embryos. Plant Physiol. 1988 Jan;86(1):208–215. doi: 10.1104/pp.86.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES