Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Aug;11(8):1499–1508. doi: 10.1105/tpc.11.8.1499

Identification and characterization of a prevacuolar compartment in stigmas of nicotiana alata

EA Miller 1, MC Lee 1, MA Anderson 1
PMCID: PMC144294  PMID: 10449583

Abstract

The stigmas of the ornamental tobacco plant Nicotiana alata accumulate large quantities of a series of 6-kD proteinase inhibitors (PIs) in the central vacuole that are derived from a 40-kD precursor protein, Na-PI. The sorting information that directs Na-PI to the vacuole is likely to reside in a C-terminal propeptide domain of 25 amino acids that forms an amphipathic alpha helix. Using cell fractionation techniques, we have examined transit of Na-PI through the endomembrane system and have identified a prevacuolar compartment that contains Na-PI with an intact targeting signal. In contrast, the targeting signal is not present on the predominant form of Na-PI in the vacuole. The prevacuolar compartment is marked by the presence of homologs of both the t-SNARE, PEP12p, and the putative vacuolar sorting receptor BP-80. Cross-linking and affinity precipitation studies revealed that Na-PI associates with BP-80 within this compartment, providing in vivo evidence for the function of BP-80 as a sorting receptor for a protein with a C-terminal vacuolar targeting signal.

Full Text

The Full Text of this article is available as a PDF (311.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. U., Bar-Peled M., Raikhel N. V. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol. 1997 May;114(1):325–336. doi: 10.1104/pp.114.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkinson A. H., Heath R. L., Simpson R. J., Clarke A. E., Anderson M. A. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell. 1993 Feb;5(2):203–213. doi: 10.1105/tpc.5.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becherer K. A., Rieder S. E., Emr S. D., Jones E. W. Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol Biol Cell. 1996 Apr;7(4):579–594. doi: 10.1091/mbc.7.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dombrowski J. E., Schroeder M. R., Bednarek S. Y., Raikhel N. V. Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell. 1993 May;5(5):587–596. doi: 10.1105/tpc.5.5.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gardiner M., Chrispeels M. J. Involvement of the Golgi Apparatus in the Synthesis and Secretion of Hydroxyproline-rich Cell Wall Glycoproteins. Plant Physiol. 1975 Mar;55(3):536–541. doi: 10.1104/pp.55.3.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hinz G, Hillmer S, Baumer M, Hohl I., I Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell. 1999 Aug;11(8):1509–1524. doi: 10.1105/tpc.11.8.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirokawa N., Takeda S. Gene targeting studies begin to reveal the function of neurofilament proteins. J Cell Biol. 1998 Oct 5;143(1):1–4. doi: 10.1083/jcb.143.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hohl I., Robinson D. G., Chrispeels M. J., Hinz G. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci. 1996 Oct;109(Pt 10):2539–2550. doi: 10.1242/jcs.109.10.2539. [DOI] [PubMed] [Google Scholar]
  9. Jauh G. Y., Fischer A. M., Grimes H. D., Ryan C. A., Jr, Rogers J. C. delta-Tonoplast intrinsic protein defines unique plant vacuole functions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12995–12999. doi: 10.1073/pnas.95.22.12995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kirsch T., Paris N., Butler J. M., Beevers L., Rogers J. C. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3403–3407. doi: 10.1073/pnas.91.8.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kirsch T., Saalbach G., Raikhel N. V., Beevers L. Interaction of a potential vacuolar targeting receptor with amino- and carboxyl-terminal targeting determinants. Plant Physiol. 1996 Jun;111(2):469–474. doi: 10.1104/pp.111.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lee M. C., Scanlon M. J., Craik D. J., Anderson M. A. A novel two-chain proteinase inhibitor generated by circularization of a multidomain precursor protein. Nat Struct Biol. 1999 Jun;6(6):526–530. doi: 10.1038/9293. [DOI] [PubMed] [Google Scholar]
  14. Matsuoka K., Bassham D. C., Raikhel N. V., Nakamura K. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol. 1995 Sep;130(6):1307–1318. doi: 10.1083/jcb.130.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neuhaus J. M., Pietrzak M., Boller T. Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant J. 1994 Jan;5(1):45–54. doi: 10.1046/j.1365-313x.1994.5010045.x. [DOI] [PubMed] [Google Scholar]
  16. Neuhaus J. M., Rogers J. C. Sorting of proteins to vacuoles in plant cells. Plant Mol Biol. 1998 Sep;38(1-2):127–144. [PubMed] [Google Scholar]
  17. Nielsen K. J., Hill J. M., Anderson M. A., Craik D. J. Synthesis and structure determination by NMR of a putative vacuolar targeting peptide and model of a proteinase inhibitor from Nicotiana alata. Biochemistry. 1996 Jan 16;35(2):369–378. doi: 10.1021/bi952228i. [DOI] [PubMed] [Google Scholar]
  18. Paris N., Rogers S. W., Jiang L., Kirsch T., Beevers L., Phillips T. E., Rogers J. C. Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol. 1997 Sep;115(1):29–39. doi: 10.1104/pp.115.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Paris N., Stanley C. M., Jones R. L., Rogers J. C. Plant cells contain two functionally distinct vacuolar compartments. Cell. 1996 May 17;85(4):563–572. doi: 10.1016/s0092-8674(00)81256-8. [DOI] [PubMed] [Google Scholar]
  20. Robinson D. G., Hinz G., Holstein S. E. The molecular characterization of transport vesicles. Plant Mol Biol. 1998 Sep;38(1-2):49–76. [PubMed] [Google Scholar]
  21. Sanderfoot A. A., Ahmed S. U., Marty-Mazars D., Rapoport I., Kirchhausen T., Marty F., Raikhel N. V. A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9920–9925. doi: 10.1073/pnas.95.17.9920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schroeder M. R., Borkhsenious O. N., Matsuoka K., Nakamura K., Raikhel N. V. Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol. 1993 Feb;101(2):451–458. doi: 10.1104/pp.101.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shimada T., Kuroyanagi M., Nishimura M., Hara-Nishimura I. A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol. 1997 Dec;38(12):1414–1420. doi: 10.1093/oxfordjournals.pcp.a029138. [DOI] [PubMed] [Google Scholar]
  24. Van Der Wilden W., Chrispeels M. J. Characterization of the Isozymes of alpha-Mannosidase Located in the Cell Wall, Protein Bodies, and Endoplasmic Reticulum of Phaseolus vulgaris Cotyledons. Plant Physiol. 1983 Jan;71(1):82–87. doi: 10.1104/pp.71.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woodward J. R., Bacic A., Jahnen W., Clarke A. E. N-Linked Glycan Chains on S-Allele-Associated Glycoproteins from Nicotiana alata. Plant Cell. 1989 May;1(5):511–514. doi: 10.1105/tpc.1.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. da Silva Conceiço A., Marty-Mazars D., Bassham D. C., Sanderfoot A. A., Marty F., Raikhel N. V. The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. Plant Cell. 1997 Apr;9(4):571–582. [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES