Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Aug;11(8):1537–1552. doi: 10.1105/tpc.11.8.1537

Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway

S Rasmussen 1, RA Dixon 1
PMCID: PMC144296  PMID: 10449586

Abstract

3H-l-Phenylalanine is incorporated into a range of phenylpropanoid compounds when fed to tobacco cell cultures. A significant proportion of (3)H-trans-cinnamic acid formed from (3)H-l-phenylalanine did not equilibrate with exogenous trans-cinnamic acid and therefore may be rapidly channeled through the cinnamate 4-hydroxylase (C4H) reaction to 4-coumaric acid. Such compartmentalization of trans-cinnamic acid was not observed after elicitation or in cell cultures constitutively expressing a bean phenylalanine ammonia-lyase (PAL) transgene. Channeling between PAL and C4H was confirmed in vitro in isolated microsomes from tobacco stems or cell suspension cultures. This channeling was strongly reduced in microsomes from stems or cell cultures of transgenic PAL-overexpressing plants or after elicitation of wild-type cell cultures. Protein gel blot analysis showed that tobacco PAL1 and bean PAL were localized in both soluble and microsomal fractions, whereas tobacco PAL2 was found only in the soluble fraction. We propose that metabolic channeling of trans-cinnamic acid requires the close association of specific forms of PAL with C4H on microsomal membranes.

Full Text

The Full Text of this article is available as a PDF (211.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alibert G., Ranjeva R., Boudet A. Recherches sur les enzymes catalysant la formation des acides phénoliques chez Quercus pedunculata (Ehrh.). II. Localisation intracellulaire de la phenylalanine ammoniaque-lyase, de la cinnamate 4-hydroxylase, et de la "benzoate synthase". Biochim Biophys Acta. 1972 Sep 15;279(2):282–289. [PubMed] [Google Scholar]
  2. BURNS V. W. REVERSIBLE SONIC INHIBITION OF PROTEIN, PURINE, AND PYRIMIDINE BIOSYNTHESIS IN THE LIVING CELL. Science. 1964 Nov 20;146(3647):1056–1058. doi: 10.1126/science.146.3647.1056. [DOI] [PubMed] [Google Scholar]
  3. Batard Y., Schalk M., Pierrel M. A., Zimmerlin A., Durst F., Werck-Reichhart D. Regulation of the Cinnamate 4-Hydroxylase (CYP73A1) in Jerusalem Artichoke Tubers in Response to Wounding and Chemical Treatments. Plant Physiol. 1997 Mar;113(3):951–959. doi: 10.1104/pp.113.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bate N. J., Orr J., Ni W., Meromi A., Nadler-Hassar T., Doerner P. W., Dixon R. A., Lamb C. J., Elkind Y. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7608–7612. doi: 10.1073/pnas.91.16.7608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell-Lelong D. A., Cusumano J. C., Meyer K., Chapple C. Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol. 1997 Mar;113(3):729–738. doi: 10.1104/pp.113.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Chapple Clint. MOLECULAR-GENETIC ANALYSIS OF PLANT CYTOCHROME P450-DEPENDENT MONOOXYGENASES. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):311–343. doi: 10.1146/annurev.arplant.49.1.311. [DOI] [PubMed] [Google Scholar]
  8. Cramer C. L., Bell J. N., Ryder T. B., Bailey J. A., Schuch W., Bolwell G. P., Robbins M. P., Dixon R. A., Lamb C. J. Co-ordinated synthesis of phytoalexin biosynthetic enzymes in biologically-stressed cells of bean (Phaseolus vulgaris L.). EMBO J. 1985 Feb;4(2):285–289. doi: 10.1002/j.1460-2075.1985.tb03627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cutler A. J., Conn E. E. The biosynthesis of cyanogenic glucosides in Linum usitatissimum (linen flax) in vitro. Arch Biochem Biophys. 1981 Dec;212(2):468–474. doi: 10.1016/0003-9861(81)90389-1. [DOI] [PubMed] [Google Scholar]
  10. Cutler A. J., Hösel W., Sternberg M., Conn E. E. The in vitro biosynthesis of taxiphyllin and the channeling of intermediates in Triglochin maritima. J Biol Chem. 1981 May 10;256(9):4253–4258. [PubMed] [Google Scholar]
  11. Dixon R. A., Paiva N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995 Jul;7(7):1085–1097. doi: 10.1105/tpc.7.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edwards K., Cramer C. L., Bolwell G. P., Dixon R. A., Schuch W., Lamb C. J. Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6731–6735. doi: 10.1073/pnas.82.20.6731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elkind Y., Edwards R., Mavandad M., Hedrick S. A., Ribak O., Dixon R. A., Lamb C. J. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9057–9061. doi: 10.1073/pnas.87.22.9057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fahrendorf T., Dixon R. A. Stress responses in alfalfa (Medicago sativa L.). XVIII: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch Biochem Biophys. 1993 Sep;305(2):509–515. doi: 10.1006/abbi.1993.1454. [DOI] [PubMed] [Google Scholar]
  15. Felton G. W., Korth K. L., Bi J. L., Wesley S. V., Huhman D. V., Mathews M. C., Murphy J. B., Lamb C., Dixon R. A. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr Biol. 1999 Mar 25;9(6):317–320. doi: 10.1016/s0960-9822(99)80140-7. [DOI] [PubMed] [Google Scholar]
  16. Fukasawa-Akada T., Kung S. D., Watson J. C. Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Mol Biol. 1996 Feb;30(4):711–722. doi: 10.1007/BF00019006. [DOI] [PubMed] [Google Scholar]
  17. Funk C., Brodelius P. E. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. : III. Conversion of 4-Methoxycinnamic Acids into 4-Hydroxybenzoic Acids. Plant Physiol. 1990 Sep;94(1):102–108. doi: 10.1104/pp.94.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Howles P. A., Sewalt VJH., Paiva N. L., Elkind Y., Bate N. J., Lamb C., Dixon R. A. Overexpression of L-Phenylalanine Ammonia-Lyase in Transgenic Tobacco Plants Reveals Control Points for Flux into Phenylpropanoid Biosynthesis. Plant Physiol. 1996 Dec;112(4):1617–1624. doi: 10.1104/pp.112.4.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hrazdina G., Wagner G. J. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys. 1985 Feb 15;237(1):88–100. doi: 10.1016/0003-9861(85)90257-7. [DOI] [PubMed] [Google Scholar]
  20. Lawton M. A., Lamb C. J. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol. 1987 Jan;7(1):335–341. doi: 10.1128/mcb.7.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee H. I., León J., Raskin I. Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4076–4079. doi: 10.1073/pnas.92.10.4076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mizutani M., Ohta D., Sato R. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol. 1997 Mar;113(3):755–763. doi: 10.1104/pp.113.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagai N., Kitauchi F., Shimosaka M., Okazaki M. Cloning and sequencing of a full-length cDNA coding for phenylalanine ammonia-lyase from tobacco cell culture. Plant Physiol. 1994 Mar;104(3):1091–1092. doi: 10.1104/pp.104.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pellegrini L., Rohfritsch O., Fritig B., Legrand M. Phenylalanine ammonia-lyase in tobacco. Molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Physiol. 1994 Nov;106(3):877–886. doi: 10.1104/pp.106.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Russell D. W., Conn E. E. The cinnamic acid 4-hydroxylase of pea seedlings. Arch Biochem Biophys. 1967 Oct;122(1):256–258. doi: 10.1016/0003-9861(67)90150-6. [DOI] [PubMed] [Google Scholar]
  26. Sewalt VJH., Ni W., Blount J. W., Jung H. G., Masoud S. A., Howles P. A., Lamb C., Dixon R. A. Reduced Lignin Content and Altered Lignin Composition in Transgenic Tobacco Down-Regulated in Expression of L-Phenylalanine Ammonia-Lyase or Cinnamate 4-Hydroxylase. Plant Physiol. 1997 Sep;115(1):41–50. doi: 10.1104/pp.115.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
  28. Subramanian K. N., Weiss R. L., Davis R. H. Use of external, biosynthetic, and organellar arginine by Neurospora. J Bacteriol. 1973 Jul;115(1):284–290. doi: 10.1128/jb.115.1.284-290.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Teutsch H. G., Hasenfratz M. P., Lesot A., Stoltz C., Garnier J. M., Jeltsch J. M., Durst F., Werck-Reichhart D. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4102–4106. doi: 10.1073/pnas.90.9.4102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wagner G. J., Hrazdina G. Endoplasmic reticulum as a site of phenylpropanoid and flavonoid metabolism in hippeastrum. Plant Physiol. 1984 Apr;74(4):901–906. doi: 10.1104/pp.74.4.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wanner L. A., Li G., Ware D., Somssich I. E., Davis K. R. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol. 1995 Jan;27(2):327–338. doi: 10.1007/BF00020187. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES