Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Aug;11(8):1445–1456. doi: 10.1105/tpc.11.8.1445

Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B

S Kircher 1, L Kozma-Bognar 1, L Kim 1, E Adam 1, K Harter 1, E Schafer 1, F Nagy 1
PMCID: PMC144301  PMID: 10449579

Abstract

The phytochrome (phy) family of plant photoreceptors controls various aspects of photomorphogenesis. Overexpression of rice phyA-green fluorescent protein (GFP) and tobacco phyB-GFP fusion proteins in tobacco results in functional photoreceptors. phyA-GFP and phyB-GFP are localized in the cytosol of dark-adapted plants. In our experiments, red light treatment led to nuclear translocation of phyA-GFP and phyB-GFP, albeit with different kinetics. Red light-induced nuclear import of phyB-GFP, but not that of phyA-GFP, was inhibited by far-red light. Far-red light alone only induced nuclear translocation of phyA-GFP. These observations indicate that nuclear import of phyA-GFP is controlled by a very low fluence response, whereas translocation of phyB-GFP is regulated by a low fluence response of phytochrome. Thus, light-regulated nucleocytoplasmic partitioning of phyA and phyB is a major step in phytochrome signaling.

Full Text

The Full Text of this article is available as a PDF (339.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam E., Kozma-Bognar L., Kolar C., Schafer E., Nagy F. The Tissue-Specific Expression of a Tobacco Phytochrome B Gene. Plant Physiol. 1996 Apr;110(4):1081–1088. doi: 10.1104/pp.110.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ang L. H., Chattopadhyay S., Wei N., Oyama T., Okada K., Batschauer A., Deng X. W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell. 1998 Jan;1(2):213–222. doi: 10.1016/s1097-2765(00)80022-2. [DOI] [PubMed] [Google Scholar]
  3. Benfey P. N., Ren L., Chua N. H. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J. 1990 Jun;9(6):1685–1696. doi: 10.1002/j.1460-2075.1990.tb08292.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chattopadhyay S., Ang L. H., Puente P., Deng X. W., Wei N. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell. 1998 May;10(5):673–683. doi: 10.1105/tpc.10.5.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Corbett A. H., Silver P. A. Nucleocytoplasmic transport of macromolecules. Microbiol Mol Biol Rev. 1997 Jun;61(2):193–211. doi: 10.1128/mmbr.61.2.193-211.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fankhauser C., Chory J. Light control of plant development. Annu Rev Cell Dev Biol. 1997;13:203–229. doi: 10.1146/annurev.cellbio.13.1.203. [DOI] [PubMed] [Google Scholar]
  7. Görlich D. Nuclear protein import. Curr Opin Cell Biol. 1997 Jun;9(3):412–419. doi: 10.1016/s0955-0674(97)80015-4. [DOI] [PubMed] [Google Scholar]
  8. Halliday K. J., Thomas B., Whitelam G. C. Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J. 1997 Nov;12(5):1079–1090. doi: 10.1046/j.1365-313x.1997.12051079.x. [DOI] [PubMed] [Google Scholar]
  9. Haseloff J., Siemering K. R., Prasher D. C., Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2122–2127. doi: 10.1073/pnas.94.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huala E., Oeller P. W., Liscum E., Han I. S., Larsen E., Briggs W. R. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science. 1997 Dec 19;278(5346):2120–2123. doi: 10.1126/science.278.5346.2120. [DOI] [PubMed] [Google Scholar]
  11. Kay S. A., Nagatani A., Keith B., Deak M., Furuya M., Chua N. H. Rice Phytochrome Is Biologically Active in Transgenic Tobacco. Plant Cell. 1989 Aug;1(8):775–782. doi: 10.1105/tpc.1.8.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kircher S., Ledger S., Hayashi H., Weisshaar B., Schäfer E., Frohnmeyer H. CPRF4a, a novel plant bZIP protein of the CPRF family: comparative analyses of light-dependent expression, post-transcriptional regulation, nuclear import and heterodimerisation. Mol Gen Genet. 1998 Apr;257(6):595–605. doi: 10.1007/s004380050687. [DOI] [PubMed] [Google Scholar]
  13. Kircher S., Wellmer F., Nick P., Rügner A., Schäfer E., Harter K. Nuclear import of the parsley bZIP transcription factor CPRF2 is regulated by phytochrome photoreceptors. J Cell Biol. 1999 Jan 25;144(2):201–211. doi: 10.1083/jcb.144.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin C., Ahmad M., Cashmore A. R. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J. 1996 Nov;10(5):893–902. doi: 10.1046/j.1365-313x.1996.10050893.x. [DOI] [PubMed] [Google Scholar]
  15. López-Juez E., Nagatani A., Tomizawa K., Deak M., Kern R., Kendrick R. E., Furuya M. The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell. 1992 Mar;4(3):241–251. [PMC free article] [PubMed] [Google Scholar]
  16. McCurdy D. W., Pratt L. H. Immunogold electron microscopy of phytochrome in Avena: identification of intracellular sites responsible for phytochrome sequestering and enhanced pelletability. J Cell Biol. 1986 Dec;103(6 Pt 1):2541–2550. doi: 10.1083/jcb.103.6.2541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Popov N., Schmitt M., Schulzeck S., Matthies H. Eine störungsfreie Mikromethode zur Bestimmung des Proteingehaltes in Gewebehomogenaten. Acta Biol Med Ger. 1975;34(9):1441–1446. [PubMed] [Google Scholar]
  18. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  19. Quail P. H., Schäfer E., Marmé D. Turnover of phytochrome in pumpkin cotyledons. Plant Physiol. 1973 Aug;52(2):128–131. doi: 10.1104/pp.52.2.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sakamoto K., Nagatani A. Nuclear localization activity of phytochrome B. Plant J. 1996 Nov;10(5):859–868. doi: 10.1046/j.1365-313x.1996.10050859.x. [DOI] [PubMed] [Google Scholar]
  21. Sisodia S. S. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell. 1998 Oct 2;95(1):1–4. doi: 10.1016/s0092-8674(00)81743-2. [DOI] [PubMed] [Google Scholar]
  22. Terzaghi W. B., Bertekap R. L., Jr, Cashmore A. R. Intracellular localization of GBF proteins and blue light-induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells. Plant J. 1997 May;11(5):967–982. doi: 10.1046/j.1365-313x.1997.11050967.x. [DOI] [PubMed] [Google Scholar]
  23. Wagner D., Fairchild C. D., Kuhn R. M., Quail P. H. Chromophore-bearing NH2-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4011–4015. doi: 10.1073/pnas.93.9.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wagner D., Tepperman J. M., Quail P. H. Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell. 1991 Dec;3(12):1275–1288. doi: 10.1105/tpc.3.12.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang X., Iino M. Interaction of cryptochrome 1, phytochrome, and ion fluxes in blue-light-induced shrinking of Arabidopsis hypocotyl protoplasts. Plant Physiol. 1998 Aug;117(4):1265–1279. doi: 10.1104/pp.117.4.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wei N., Deng X. W. The role of the COP/DET/FUS genes in light control of arabidopsis seedling development. Plant Physiol. 1996 Nov;112(3):871–878. doi: 10.1104/pp.112.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamaguchi R., Nakamura M., Mochizuki N., Kay S. A., Nagatani A. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol. 1999 May 3;145(3):437–445. doi: 10.1083/jcb.145.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. von Arnim A. G., Deng X. W. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell. 1994 Dec 16;79(6):1035–1045. doi: 10.1016/0092-8674(94)90034-5. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES