Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Sep;11(9):1769–1784. doi: 10.1105/tpc.11.9.1769

Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum.

CM Vicient 1, A Suoniemi 1, K Anamthawat-Jónsson 1, J Tanskanen 1, A Beharav 1, E Nevo 1, AH Schulman 1
PMCID: PMC144304  PMID: 10488242

Abstract

The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity."

Full Text

The Full Text of this article is available as a PDF (535.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. E., Mellor J., Gull K., Sim R. B., Tuite M. F., Kingsman S. M., Kingsman A. J. The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins. Cell. 1987 Apr 10;49(1):111–119. doi: 10.1016/0092-8674(87)90761-6. [DOI] [PubMed] [Google Scholar]
  2. Ahn S., Anderson J. A., Sorrells M. E., Tanksley S. D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. doi: 10.1007/BF00279889. [DOI] [PubMed] [Google Scholar]
  3. Athma P., Peterson T. Ac induces homologous recombination at the maize P locus. Genetics. 1991 May;128(1):163–173. doi: 10.1093/genetics/128.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banville D., Rotaru M., Boie Y. The intracisternal A particle derived solo LTR promoter of the rat oncomodulin gene is not present in the mouse gene. Genetica. 1992;86(1-3):85–97. doi: 10.1007/BF00133713. [DOI] [PubMed] [Google Scholar]
  5. Barakat A., Carels N., Bernardi G. The distribution of genes in the genomes of Gramineae. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6857–6861. doi: 10.1073/pnas.94.13.6857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennetzen J. L., Kellogg E. A. Do Plants Have a One-Way Ticket to Genomic Obesity? Plant Cell. 1997 Sep;9(9):1509–1514. doi: 10.1105/tpc.9.9.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bennetzen J. L., Kellogg E. A. Reply. Plant Cell. 1997 Nov;9(11):1901–1902. doi: 10.1105/tpc.9.11.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., Van Staveren M., Stiekema W. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998 Jan 29;391(6666):485–488. doi: 10.1038/35140. [DOI] [PubMed] [Google Scholar]
  9. Blusch J. H., Haltmeier M., Frech K., Sander I., Leib-Mösch C., Brack-Werner R., Werner T. Identification of endogenous retroviral sequences based on modular organization: proviral structure at the SSAV1 locus. Genomics. 1997 Jul 1;43(1):52–61. doi: 10.1006/geno.1997.4790. [DOI] [PubMed] [Google Scholar]
  10. Boeke J. D., Chapman K. B. Retrotransposition mechanisms. Curr Opin Cell Biol. 1991 Jun;3(3):502–507. doi: 10.1016/0955-0674(91)90079-e. [DOI] [PubMed] [Google Scholar]
  11. Chen M., SanMiguel P., de Oliveira A. C., Woo S. S., Zhang H., Wing R. A., Bennetzen J. L. Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3431–3435. doi: 10.1073/pnas.94.7.3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doolittle R. F., Feng D. F., Johnson M. S., McClure M. A. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. doi: 10.1086/416128. [DOI] [PubMed] [Google Scholar]
  13. Doolittle W. F., Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980 Apr 17;284(5757):601–603. doi: 10.1038/284601a0. [DOI] [PubMed] [Google Scholar]
  14. Flavell A. J., Dunbar E., Anderson R., Pearce S. R., Hartley R., Kumar A. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 1992 Jul 25;20(14):3639–3644. doi: 10.1093/nar/20.14.3639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gaut B. S., Morton B. R., McCaig B. C., Clegg M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274–10279. doi: 10.1073/pnas.93.19.10274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Geyer P. K., Green M. M., Corces V. G. Reversion of a gypsy-induced mutation at the yellow (y) locus of Drosophila melanogaster is associated with the insertion of a newly defined transposable element. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3938–3942. doi: 10.1073/pnas.85.11.3938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goodman H. M., Ecker J. R., Dean C. The genome of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10831–10835. doi: 10.1073/pnas.92.24.10831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grandbastien M. A. Retroelements in higher plants. Trends Genet. 1992 Mar;8(3):103–108. doi: 10.1016/0168-9525(92)90198-d. [DOI] [PubMed] [Google Scholar]
  19. Gribbon B. M., Pearce S. R., Kalendar R., Schulman A. H., Paulin L., Jack P., Kumar A., Flavell A. J. Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet. 1999 Jul;261(6):883–891. doi: 10.1007/pl00008635. [DOI] [PubMed] [Google Scholar]
  20. Hirochika H. Activation of tobacco retrotransposons during tissue culture. EMBO J. 1993 Jun;12(6):2521–2528. doi: 10.1002/j.1460-2075.1993.tb05907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hirochika H., Fukuchi A., Kikuchi F. Retrotransposon families in rice. Mol Gen Genet. 1992 May;233(1-2):209–216. doi: 10.1007/BF00587581. [DOI] [PubMed] [Google Scholar]
  22. Hsiao C., Chatterton N. J., Asay K. H., Jensen K. B. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome. 1995 Apr;38(2):211–223. doi: 10.1139/g95-026. [DOI] [PubMed] [Google Scholar]
  23. Hu W., Timmermans M. C., Messing J. Interchromosomal recombination in Zea mays. Genetics. 1998 Nov;150(3):1229–1237. doi: 10.1093/genetics/150.3.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hueros G., Loarce Y., Ferrer E. A structural and evolutionary analysis of a dispersed repetitive sequence. Plant Mol Biol. 1993 Jul;22(4):635–643. doi: 10.1007/BF00047404. [DOI] [PubMed] [Google Scholar]
  25. Hyman R. W., Brunovskis I., Summers W. C. DNA base sequence homology between coliphages T7 and phiII and between T3 and phiII as determined by heteroduplex mapping in the electron microscope. J Mol Biol. 1973 Jun 25;77(2):189–196. doi: 10.1016/0022-2836(73)90330-6. [DOI] [PubMed] [Google Scholar]
  26. Ikeda T. M., Terachi T., Tsunewaki K. Variations in chloroplast proteins and nucleotide sequences of three chloroplast genes in Triticum and Aegilops. Jpn J Genet. 1992 Apr;67(2):111–123. doi: 10.1266/jjg.67.111. [DOI] [PubMed] [Google Scholar]
  27. Kim J. M., Vanguri S., Boeke J. D., Gabriel A., Voytas D. F. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 1998 May;8(5):464–478. doi: 10.1101/gr.8.5.464. [DOI] [PubMed] [Google Scholar]
  28. Kurata N., Umehara Y., Tanoue H., Sasaki T. Physical mapping of the rice genome with YAC clones. Plant Mol Biol. 1997 Sep;35(1-2):101–113. [PubMed] [Google Scholar]
  29. Lucas H., Feuerbach F., Kunert K., Grandbastien M. A., Caboche M. RNA-mediated transposition of the tobacco retrotransposon Tnt1 in Arabidopsis thaliana. EMBO J. 1995 May 15;14(10):2364–2373. doi: 10.1002/j.1460-2075.1995.tb07231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Manninen I., Schulman A. H. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol. 1993 Aug;22(5):829–846. doi: 10.1007/BF00027369. [DOI] [PubMed] [Google Scholar]
  31. Matsuoka Y., Tsunewaki K. Wheat retrotransposon families identified by reverse transcriptase domain analysis. Mol Biol Evol. 1996 Dec;13(10):1384–1392. doi: 10.1093/oxfordjournals.molbev.a025585. [DOI] [PubMed] [Google Scholar]
  32. Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal Biochem. 1984 May 1;138(2):267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
  33. Nakamura Y., Gojobori T., Ikemura T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res. 1997 Jan 1;25(1):244–245. doi: 10.1093/nar/25.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Noma K., Nakajima R., Ohtsubo H., Ohtsubo E. RIRE1, a retrotransposon from wild rice Oryza australiensis. Genes Genet Syst. 1997 Jun;72(3):131–140. doi: 10.1266/ggs.72.131. [DOI] [PubMed] [Google Scholar]
  35. Ogihara Y., Terachi T., Sasakuma T. Molecular analysis of the hot spot region related to length mutations in wheat chloroplast DNAs. I. Nucleotide divergence of genes and intergenic spacer regions located in the hot spot region. Genetics. 1991 Nov;129(3):873–884. doi: 10.1093/genetics/129.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orgel L. E., Crick F. H. Selfish DNA: the ultimate parasite. Nature. 1980 Apr 17;284(5757):604–607. doi: 10.1038/284604a0. [DOI] [PubMed] [Google Scholar]
  37. Panstruga R., Büschges R., Piffanelli P., Schulze-Lefert P. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 1998 Feb 15;26(4):1056–1062. doi: 10.1093/nar/26.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Parket A., Inbar O., Kupiec M. Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics. 1995 May;140(1):67–77. doi: 10.1093/genetics/140.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pearce S. R., Harrison G., Li D., Heslop-Harrison J., Kumar A., Flavell A. J. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet. 1996 Feb 25;250(3):305–315. doi: 10.1007/BF02174388. [DOI] [PubMed] [Google Scholar]
  40. Pearce S. R., Pich U., Harrison G., Flavell A. J., Heslop-Harrison J. S., Schubert I., Kumar A. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res. 1996 Aug;4(5):357–364. doi: 10.1007/BF02257271. [DOI] [PubMed] [Google Scholar]
  41. Petrov D. Slow but Steady: Reduction of Genome Size through Biased Mutation. Plant Cell. 1997 Nov;9(11):1900–1901. doi: 10.1105/tpc.9.11.1900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Puchta H., Kocher S., Hohn B. Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol Cell Biol. 1992 Aug;12(8):3372–3379. doi: 10.1128/mcb.12.8.3372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ramsay L., Macaulay M., Cardle L., Morgante M., degli Ivanissevich S., Maestri E., Powell W., Waugh R. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 1999 Feb;17(4):415–425. doi: 10.1046/j.1365-313x.1999.00392.x. [DOI] [PubMed] [Google Scholar]
  44. Royo J., Nass N., Matton D. P., Okamoto S., Clarke A. E., Newbigin E. A retrotransposon-like sequence linked to the S-locus of Nicotiana alata is expressed in styles in response to touch. Mol Gen Genet. 1996 Feb 5;250(2):180–188. doi: 10.1007/BF02174177. [DOI] [PubMed] [Google Scholar]
  45. Saghai Maroof M. A., Allard R. W., Zhang Q. F. Genetic diversity and ecogeographical differentiation among ribosomal DNA alleles in wild and cultivated barley. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8486–8490. doi: 10.1073/pnas.87.21.8486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. SanMiguel P., Gaut B. S., Tikhonov A., Nakajima Y., Bennetzen J. L. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998 Sep;20(1):43–45. doi: 10.1038/1695. [DOI] [PubMed] [Google Scholar]
  47. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  48. Schwarzacher T., Leitch A. R. Enzymatic treatment of plant material to spread chromosomes for in situ hybridization. Methods Mol Biol. 1994;28:153–160. doi: 10.1385/0-89603-254-x:153. [DOI] [PubMed] [Google Scholar]
  49. Sentry J. W., Smyth D. R. An element with long terminal repeats and its variant arrangements in the genome of Lilium henryi. Mol Gen Genet. 1989 Jan;215(2):349–354. doi: 10.1007/BF00339741. [DOI] [PubMed] [Google Scholar]
  50. Suoniemi A., Anamthawat-Jónsson K., Arna T., Schulman A. H. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol. 1996 Mar;30(6):1321–1329. doi: 10.1007/BF00019563. [DOI] [PubMed] [Google Scholar]
  51. Suoniemi A., Narvanto A., Schulman A. H. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol. 1996 May;31(2):295–306. doi: 10.1007/BF00021791. [DOI] [PubMed] [Google Scholar]
  52. Suoniemi A., Schmidt D., Schulman A. H. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica. 1997;100(1-3):219–230. [PubMed] [Google Scholar]
  53. Suoniemi A., Tanskanen J., Pentikäinen O., Johnson M. S., Schulman A. H. The core domain of retrotransposon integrase in Hordeum: predicted structure and evolution. Mol Biol Evol. 1998 Sep;15(9):1135–1144. doi: 10.1093/oxfordjournals.molbev.a026021. [DOI] [PubMed] [Google Scholar]
  54. Suoniemi A., Tanskanen J., Schulman A. H. Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 1998 Mar;13(5):699–705. doi: 10.1046/j.1365-313x.1998.00071.x. [DOI] [PubMed] [Google Scholar]
  55. Tae Suk R. o., Muramatsu M., Busch H. Labeling of RNA of isolated nucleoli with UTP-14C. Biochem Biophys Res Commun. 1964;14:149–155. doi: 10.1016/0006-291x(64)90245-1. [DOI] [PubMed] [Google Scholar]
  56. Takeda S., Sugimoto K., Otsuki H., Hirochika H. Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol. 1998 Feb;36(3):365–376. doi: 10.1023/a:1005911413528. [DOI] [PubMed] [Google Scholar]
  57. Thomas C. A., Jr The genetic organization of chromosomes. Annu Rev Genet. 1971;5:237–256. doi: 10.1146/annurev.ge.05.120171.001321. [DOI] [PubMed] [Google Scholar]
  58. Vernhettes S., Grandbastien M. A., Casacuberta J. M. In vivo characterization of transcriptional regulatory sequences involved in the defence-associated expression of the tobacco retrotransposon Tnt1. Plant Mol Biol. 1997 Nov;35(5):673–679. doi: 10.1023/a:1005826605598. [DOI] [PubMed] [Google Scholar]
  59. Vershinin A. V., Salina E. A., Solovyov V. V., Timofeyeva L. L. Genomic organization, evolution, and structural peculiarities of highly repetitive DNA of Hordeum vulgare. Genome. 1990 Jun;33(3):441–449. doi: 10.1139/g90-066. [DOI] [PubMed] [Google Scholar]
  60. Voytas D. F., Cummings M. P., Koniczny A., Ausubel F. M., Rodermel S. R. copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7124–7128. doi: 10.1073/pnas.89.15.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Voytas D. F., Naylor G. J. Rapid flux in plant genomes. Nat Genet. 1998 Sep;20(1):6–7. doi: 10.1038/1652. [DOI] [PubMed] [Google Scholar]
  62. Waugh R., McLean K., Flavell A. J., Pearce S. R., Kumar A., Thomas B. B., Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet. 1997 Feb 27;253(6):687–694. doi: 10.1007/s004380050372. [DOI] [PubMed] [Google Scholar]
  63. Wessler S. R., Bureau T. E., White S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995 Dec;5(6):814–821. doi: 10.1016/0959-437x(95)80016-x. [DOI] [PubMed] [Google Scholar]
  64. Wessler S. R. Turned on by stress. Plant retrotransposons. Curr Biol. 1996 Aug 1;6(8):959–961. doi: 10.1016/s0960-9822(02)00638-3. [DOI] [PubMed] [Google Scholar]
  65. Zhou J., Kilian A., Warner R. L., Kleinhofs A. Variation of nitrate reductase genes in selected grass species. Genome. 1995 Oct;38(5):919–927. doi: 10.1139/g95-121. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES