Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Sep;11(9):1675–1694. doi: 10.1105/tpc.11.9.1675

Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae.

G Burger 1, D Saint-Louis 1, M W Gray 1, B F Lang 1
PMCID: PMC144311  PMID: 10488235

Abstract

The mitochondrial DNA (mtDNA) of Porphyra purpurea, a circular-mapping genome of 36,753 bp, has been completely sequenced. A total of 57 densely packed genes has been identified, including the basic set typically found in animals and fungi, as well as seven genes characteristic of protist and plant mtDNAs and specifying ribosomal proteins and subunits of succinate:ubiquinone oxidoreductase. The mitochondrial large subunit rRNA gene contains two group II introns that are extraordinarily similar to those found in the cyanobacterium Calothrix sp, suggesting a recent lateral intron transfer between a bacterial and a mitochondrial genome. Notable features of P. purpurea mtDNA include the presence of two 291-bp inverted repeats that likely mediate homologous recombination, resulting in genome rearrangement, and of numerous sequence polymorphisms in the coding and intergenic regions. Comparative analysis of red algal mitochondrial genomes from five different, evolutionarily distant orders reveals that rhodophyte mtDNAs are unusually uniform in size and gene order. Finally, phylogenetic analyses provide strong evidence that red algae share a common ancestry with green algae and plants.

Full Text

The Full Text of this article is available as a PDF (401.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  3. Andersson S. G., Zomorodipour A., Andersson J. O., Sicheritz-Pontén T., Alsmark U. C., Podowski R. M., Näslund A. K., Eriksson A. S., Winkler H. H., Kurland C. G. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 1998 Nov 12;396(6707):133–140. doi: 10.1038/24094. [DOI] [PubMed] [Google Scholar]
  4. Beagley C. T., Okimoto R., Wolstenholme D. R. The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics. 1998 Mar;148(3):1091–1108. doi: 10.1093/genetics/148.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhattacharya D., Stickel S. K., Sogin M. L. Isolation and molecular phylogenetic analysis of actin-coding regions from Emiliania huxleyi, a Prymnesiophyte alga, by reverse transcriptase and PCR methods. Mol Biol Evol. 1993 May;10(3):689–703. doi: 10.1093/oxfordjournals.molbev.a040021. [DOI] [PubMed] [Google Scholar]
  6. Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W., Clayton D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. doi: 10.1016/0092-8674(81)90300-7. [DOI] [PubMed] [Google Scholar]
  7. Boer P. H., Gray M. W. Genes encoding a subunit of respiratory NADH dehydrogenase (ND1) and a reverse transcriptase-like protein (RTL) are linked to ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. EMBO J. 1988 Nov;7(11):3501–3508. doi: 10.1002/j.1460-2075.1988.tb03226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boer P. H., McIntosh J. E., Gray M. W., Bonen L. The wheat mitochondrial gene for apocytochrome b: absence of a prokaryotic ribosome binding site. Nucleic Acids Res. 1985 Apr 11;13(7):2281–2292. doi: 10.1093/nar/13.7.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem. 1998 Jul 17;273(29):18003–18006. doi: 10.1074/jbc.273.29.18003. [DOI] [PubMed] [Google Scholar]
  10. Bonen L., Boer P. H., Gray M. W. The wheat cytochrome oxidase subunit II gene has an intron insert and three radical amino acid changes relative to maize. EMBO J. 1984 Nov;3(11):2531–2536. doi: 10.1002/j.1460-2075.1984.tb02168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bonen L., Boer P. H., McIntosh J. E., Gray M. W. Nucleotide sequence of the wheat mitochondrial gene for subunit I of cytochrome oxidase. Nucleic Acids Res. 1987 Aug 25;15(16):6734–6734. doi: 10.1093/nar/15.16.6734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bonitz S. G., Coruzzi G., Thalenfeld B. E., Tzagoloff A., Macino G. Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase. J Biol Chem. 1980 Dec 25;255(24):11927–11941. [PubMed] [Google Scholar]
  13. Bott M., Preisig O., Hennecke H. Genes for a second terminal oxidase in Bradyrhizobium japonicum. Arch Microbiol. 1992;158(5):335–343. doi: 10.1007/BF00245362. [DOI] [PubMed] [Google Scholar]
  14. Boyen C., Leblanc C., Bonnard G., Grienenberger J. M., Kloareg B. Nucleotide sequence of the cox3 gene from Chondrus crispus: evidence that UGA encodes tryptophan and evolutionary implications. Nucleic Acids Res. 1994 Apr 25;22(8):1400–1403. doi: 10.1093/nar/22.8.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Burger G., Lang B. F., Reith M., Gray M. W. Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2328–2332. doi: 10.1073/pnas.93.6.2328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Burger G., Plante I., Lonergan K. M., Gray M. W. The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J Mol Biol. 1995 Feb 3;245(5):522–537. doi: 10.1006/jmbi.1994.0043. [DOI] [PubMed] [Google Scholar]
  18. Cao J., Hosler J., Shapleigh J., Revzin A., Ferguson-Miller S. Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. The coxII/coxIII operon codes for structural and assembly proteins homologous to those in yeast. J Biol Chem. 1992 Dec 5;267(34):24273–24278. [PubMed] [Google Scholar]
  19. Cao J., Shapleigh J., Gennis R., Revzin A., Ferguson-Miller S. The gene encoding cytochrome c oxidase subunit II from Rhodobacter sphaeroides; comparison of the deduced amino acid sequence with sequences of corresponding peptides from other species. Gene. 1991 May 15;101(1):133–137. doi: 10.1016/0378-1119(91)90235-4. [DOI] [PubMed] [Google Scholar]
  20. Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993 Dec;57(4):953–994. doi: 10.1128/mr.57.4.953-994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cho Y., Qiu Y. L., Kuhlman P., Palmer J. D. Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14244–14249. doi: 10.1073/pnas.95.24.14244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Clary D. O., Wolstenholme D. R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. doi: 10.1007/BF02099755. [DOI] [PubMed] [Google Scholar]
  23. Coffey T. J., Enright M. C., Daniels M., Morona J. K., Morona R., Hryniewicz W., Paton J. C., Spratt B. G. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol. 1998 Jan;27(1):73–83. doi: 10.1046/j.1365-2958.1998.00658.x. [DOI] [PubMed] [Google Scholar]
  24. Costa M., Déme E., Jacquier A., Michel F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol. 1997 Apr 4;267(3):520–536. doi: 10.1006/jmbi.1996.0882. [DOI] [PubMed] [Google Scholar]
  25. Cummings D. J., McNally K. L., Domenico J. M., Matsuura E. T. The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet. 1990 May;17(5):375–402. doi: 10.1007/BF00334517. [DOI] [PubMed] [Google Scholar]
  26. Daignan-Fornier B., Valens M., Lemire B. D., Bolotin-Fukuhara M. Structure and regulation of SDH3, the yeast gene encoding the cytochrome b560 subunit of respiratory complex II. J Biol Chem. 1994 Jun 3;269(22):15469–15472. [PubMed] [Google Scholar]
  27. De Wachter R., Chen M. W., Vandenberghe A. Conservation of secondary structure in 5 S ribosomal RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable. Biochimie. 1982 May;64(5):311–329. doi: 10.1016/s0300-9084(82)80436-7. [DOI] [PubMed] [Google Scholar]
  28. Dear S., Staden R. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 1991 Jul 25;19(14):3907–3911. doi: 10.1093/nar/19.14.3907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Demoulin V. The red algal-higher fungi phylogenetic link: the last ten years. Biosystems. 1985;18(3-4):347–356. doi: 10.1016/0303-2647(85)90034-6. [DOI] [PubMed] [Google Scholar]
  30. Dujon B., Colleaux L., Jacquier A., Michel F., Monteilhet C. Mitochondrial introns as mobile genetic elements: the role of intron-encoded proteins. Basic Life Sci. 1986;40:5–27. doi: 10.1007/978-1-4684-5251-8_2. [DOI] [PubMed] [Google Scholar]
  31. Ferat J. L., Le Gouar M., Michel F. Multiple group II self-splicing introns in mobile DNA from Escherichia coli. C R Acad Sci III. 1994 Feb;317(2):141–148. [PubMed] [Google Scholar]
  32. Ferat J. L., Michel F. Group II self-splicing introns in bacteria. Nature. 1993 Jul 22;364(6435):358–361. doi: 10.1038/364358a0. [DOI] [PubMed] [Google Scholar]
  33. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  34. Fontaine J. M., Rousvoal S., Leblanc C., Kloareg B., Loiseaux-de Goër S. The mitochondrial LSU rDNA of the brown alga Pylaiella littoralis reveals alpha-proteobacterial features and is split by four group IIB introns with an atypical phylogeny. J Mol Biol. 1995 Aug 18;251(3):378–389. doi: 10.1006/jmbi.1995.0441. [DOI] [PubMed] [Google Scholar]
  35. Gabrielson P. W., Garbary D. J., Scagel R. F. The nature of the ancestral red alga: inferences from a cladistic analysis. Biosystems. 1985;18(3-4):335–346. doi: 10.1016/0303-2647(85)90033-4. [DOI] [PubMed] [Google Scholar]
  36. Goff L. J., Coleman A. W. Fate of Parasite and Host Organelle DNA during Cellular Transformation of Red Algae by Their Parasites. Plant Cell. 1995 Nov;7(11):1899–1911. doi: 10.1105/tpc.7.11.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gray M. W., Lang B. F., Cedergren R., Golding G. B., Lemieux C., Sankoff D., Turmel M., Brossard N., Delage E., Littlejohn T. G. Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res. 1998 Feb 15;26(4):865–878. doi: 10.1093/nar/26.4.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Gualberto J. M., Domon C., Weil J. H., Grienenberger J. M. Structure and transcription of the gene coding for subunit 3 of cytochrome oxidase in wheat mitochondria. Curr Genet. 1990 Jan;17(1):41–47. doi: 10.1007/BF00313247. [DOI] [PubMed] [Google Scholar]
  39. Jacobs H. T., Elliott D. J., Math V. B., Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. doi: 10.1016/0022-2836(88)90452-4. [DOI] [PubMed] [Google Scholar]
  40. Keeling P. J., Doolittle W. F. Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1270–1275. doi: 10.1073/pnas.94.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kempken F., Hermanns J., Osiewacz H. D. Evolution of linear plasmids. J Mol Evol. 1992 Dec;35(6):502–513. doi: 10.1007/BF00160211. [DOI] [PubMed] [Google Scholar]
  42. Kessler U., Zetsche K. Physical map and gene organization of the mitochondrial genome from the unicellular green alga Platymonas (Tetraselmis) subcordiformis (Prasinophyceae). Plant Mol Biol. 1995 Dec;29(5):1081–1086. doi: 10.1007/BF00014979. [DOI] [PubMed] [Google Scholar]
  43. Korab-Laskowska M., Rioux P., Brossard N., Littlejohn T. G., Gray M. W., Lang B. F., Burger G. The Organelle Genome Database Project (GOBASE). Nucleic Acids Res. 1998 Jan 1;26(1):138–144. doi: 10.1093/nar/26.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kurowski B., Ludwig B. The genes of the Paracoccus denitrificans bc1 complex. Nucleotide sequence and homologies between bacterial and mitochondrial subunits. J Biol Chem. 1987 Oct 5;262(28):13805–13811. [PubMed] [Google Scholar]
  46. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  47. Kück U. The intron of a plastid gene from a green alga contains an open reading frame for a reverse transcriptase-like enzyme. Mol Gen Genet. 1989 Aug;218(2):257–265. doi: 10.1007/BF00331276. [DOI] [PubMed] [Google Scholar]
  48. L'Abbé D., Duhaime J. F., Lang B. F., Morais R. The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J Biol Chem. 1991 Jun 15;266(17):10844–10850. [PubMed] [Google Scholar]
  49. Laforest M. J., Roewer I., Lang B. F. Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG 'stop' codons recognized as leucine. Nucleic Acids Res. 1997 Feb 1;25(3):626–632. doi: 10.1093/nar/25.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lang B. F., Ahne F., Bonen L. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. The cytochrome b gene has an intron closely related to the first two introns in the Saccharomyces cerevisiae cox1 gene. J Mol Biol. 1985 Aug 5;184(3):353–366. doi: 10.1016/0022-2836(85)90286-4. [DOI] [PubMed] [Google Scholar]
  51. Lang B. F., Burger G. A rapid, high resolution DNA sequencing gel system. Anal Biochem. 1990 Jul;188(1):176–180. doi: 10.1016/0003-2697(90)90548-n. [DOI] [PubMed] [Google Scholar]
  52. Lang B. F., Burger G., O'Kelly C. J., Cedergren R., Golding G. B., Lemieux C., Sankoff D., Turmel M., Gray M. W. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997 May 29;387(6632):493–497. doi: 10.1038/387493a0. [DOI] [PubMed] [Google Scholar]
  53. Leblanc C., Boyen C., Richard O., Bonnard G., Grienenberger J. M., Kloareg B. Complete sequence of the mitochondrial DNA of the rhodophyte Chondrus crispus (Gigartinales). Gene content and genome organization. J Mol Biol. 1995 Jul 21;250(4):484–495. doi: 10.1006/jmbi.1995.0392. [DOI] [PubMed] [Google Scholar]
  54. Leblanc C., Kloareg B., Loiseaux-deGoër S., Boyen C. DNA sequence, structure, and phylogenetic relationship of the mitochondrial small-subunit rRNA from the red alga Chondrus crispus (Gigartinales rhodophytes). J Mol Evol. 1995 Aug;41(2):196–202. doi: 10.1007/BF00170673. [DOI] [PubMed] [Google Scholar]
  55. Lemieux C., Lee R. W. Nonreciprocal recombination between alleles of the chloroplast 23S rRNA gene in interspecific Chlamydomonas crosses. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4166–4170. doi: 10.1073/pnas.84.12.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Liaud M. F., Brandt U., Cerff R. The marine red alga Chondrus crispus has a highly divergent beta-tubulin gene with a characteristic 5' intron: functional and evolutionary implications. Plant Mol Biol. 1995 May;28(2):313–325. doi: 10.1007/BF00020250. [DOI] [PubMed] [Google Scholar]
  57. Liu Q. Y., Baldauf S. L., Reith M. E. Elongation factor 1 alpha genes of the red alga Porphyra purpurea include a novel, developmentally specialized variant. Plant Mol Biol. 1996 Apr;31(1):77–85. doi: 10.1007/BF00020608. [DOI] [PubMed] [Google Scholar]
  58. Lonergan K. M., Gray M. W. The ribosomal RNA gene region in Acanthamoeba castellanii mitochondrial DNA. A case of evolutionary transfer of introns between mitochondria and plastids? J Mol Biol. 1994 Jun 17;239(4):476–499. doi: 10.1006/jmbi.1994.1390. [DOI] [PubMed] [Google Scholar]
  59. Lustig F., Borén T., Claesson C., Simonsson C., Barciszewska M., Lagerkvist U. The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3343–3347. doi: 10.1073/pnas.90.8.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Michel F., Lang B. F. Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. 1985 Aug 15;316(6029):641–643. doi: 10.1038/316641a0. [DOI] [PubMed] [Google Scholar]
  61. Michel F., Umesono K., Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene. 1989 Oct 15;82(1):5–30. doi: 10.1016/0378-1119(89)90026-7. [DOI] [PubMed] [Google Scholar]
  62. Mohr G., Perlman P. S., Lambowitz A. M. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res. 1993 Nov 11;21(22):4991–4997. doi: 10.1093/nar/21.22.4991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Mullany P., Pallen M., Wilks M., Stephen J. R., Tabaqchali S. A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene. 1996 Sep 26;174(1):145–150. doi: 10.1016/0378-1119(96)00511-2. [DOI] [PubMed] [Google Scholar]
  64. Netzker R., Köchel H. G., Basak N., Küntzel H. Nucleotide sequence of Aspergillus nidulans mitochondrial genes coding for ATPase subunit 6, cytochrome oxidase subunit 3, seven unidentified proteins, four tRNAs and L-rRNA. Nucleic Acids Res. 1982 Aug 11;10(15):4783–4794. doi: 10.1093/nar/10.15.4783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Oda K., Yamato K., Ohta E., Nakamura Y., Takemura M., Nozato N., Akashi K., Kanegae T., Ogura Y., Kohchi T. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol. 1992 Jan 5;223(1):1–7. doi: 10.1016/0022-2836(92)90708-r. [DOI] [PubMed] [Google Scholar]
  66. Ohta N., Sato N., Kuroiwa T. Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res. 1998 Nov 15;26(22):5190–5198. doi: 10.1093/nar/26.22.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Okpodu C. M., Robertson D., Boss W. F., Togasaki R. K., Surzycki S. J. Rapid isolation of nuclei from carrot suspension culture cells using a BioNebulizer. Biotechniques. 1994 Jan;16(1):154–159. [PubMed] [Google Scholar]
  68. Paillard M., Sederoff R. R., Levings C. S. Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize. EMBO J. 1985 May;4(5):1125–1128. doi: 10.1002/j.1460-2075.1985.tb03749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Paquin B., Laforest M. J., Forget L., Roewer I., Wang Z., Longcore J., Lang B. F. The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr Genet. 1997 May;31(5):380–395. doi: 10.1007/s002940050220. [DOI] [PubMed] [Google Scholar]
  70. Paquin B., Lang B. F. The mitochondrial DNA of Allomyces macrogynus: the complete genomic sequence from an ancestral fungus. J Mol Biol. 1996 Feb 9;255(5):688–701. doi: 10.1006/jmbi.1996.0056. [DOI] [PubMed] [Google Scholar]
  71. Pearson W. R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
  72. Pfitzinger H., Weil J. H., Pillay D. T., Guillemaut P. Codon recognition mechanisms in plant chloroplasts. Plant Mol Biol. 1990 May;14(5):805–814. doi: 10.1007/BF00016513. [DOI] [PubMed] [Google Scholar]
  73. Prioli L. M., Huang J., Levings C. S., 3rd The plant mitochondrial open reading frame orf221 encodes a membrane-bound protein. Plant Mol Biol. 1993 Oct;23(2):287–295. doi: 10.1007/BF00029005. [DOI] [PubMed] [Google Scholar]
  74. Ragan M. A., Bird C. J., Rice E. L., Gutell R. R., Murphy C. A., Singh R. K. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7276–7280. doi: 10.1073/pnas.91.15.7276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Raitio M., Jalli T., Saraste M. Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. EMBO J. 1987 Sep;6(9):2825–2833. doi: 10.1002/j.1460-2075.1987.tb02579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Reith M., Munholland J. A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea. Plant Cell. 1993 Apr;5(4):465–475. doi: 10.1105/tpc.5.4.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Reith M., Munholland J. The ribosomal RNA repeats are non-identical and directly oriented in the chloroplast genome of the red alga Porphyra purpurea. Curr Genet. 1993 Nov;24(5):443–450. doi: 10.1007/BF00351855. [DOI] [PubMed] [Google Scholar]
  78. Richard O., Bonnard G., Grienenberger J. M., Kloareg B., Boyen C. Transcription initiation and RNA processing in the mitochondria of the red alga Chondrus crispus: convergence in the evolution of transcription mechanisms in mitochondria. J Mol Biol. 1998 Oct 30;283(3):549–557. doi: 10.1006/jmbi.1998.2112. [DOI] [PubMed] [Google Scholar]
  79. Roe B. A., Ma D. P., Wilson R. K., Wong J. F. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed] [Google Scholar]
  80. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  81. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Sekito T., Okamoto K., Kitano H., Yoshida K. The complete mitochondrial DNA sequence of Hansenula wingei reveals new characteristics of yeast mitochondria. Curr Genet. 1995 Jun;28(1):39–53. doi: 10.1007/BF00311880. [DOI] [PubMed] [Google Scholar]
  83. Shapleigh J. P., Gennis R. B. Cloning, sequencing and deletion from the chromosome of the gene encoding subunit I of the aa3-type cytochrome c oxidase of Rhodobacter sphaeroides. Mol Microbiol. 1992 Mar;6(5):635–642. doi: 10.1111/j.1365-2958.1992.tb01511.x. [DOI] [PubMed] [Google Scholar]
  84. Shub D. A., Goodrich-Blair H., Eddy S. R. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci. 1994 Oct;19(10):402–404. doi: 10.1016/0968-0004(94)90086-8. [DOI] [PubMed] [Google Scholar]
  85. Skelly P. J., Hardy C. M., Clark-Walker G. D. A mobile group II intron of a naturally occurring rearranged mitochondrial genome in Kluyveromyces lactis. Curr Genet. 1991 Jul;20(1-2):115–120. doi: 10.1007/BF00312773. [DOI] [PubMed] [Google Scholar]
  86. Smith S. W., Overbeek R., Woese C. R., Gilbert W., Gillevet P. M. The genetic data environment an expandable GUI for multiple sequence analysis. Comput Appl Biosci. 1994 Dec;10(6):671–675. doi: 10.1093/bioinformatics/10.6.671. [DOI] [PubMed] [Google Scholar]
  87. Sogin M. l. History assignment: when was the mitochondrion founded? Curr Opin Genet Dev. 1997 Dec;7(6):792–799. doi: 10.1016/s0959-437x(97)80042-1. [DOI] [PubMed] [Google Scholar]
  88. Spencer D. F., Bonen L., Gray M. W. Primary sequence of wheat mitochondrial 5S ribosomal ribonucleic acid: functional and evolutionary implications. Biochemistry. 1981 Jul 7;20(14):4022–4029. doi: 10.1021/bi00517a011. [DOI] [PubMed] [Google Scholar]
  89. Stamper S. E., Dewey R. E., Bland M. M., Levings C. S., 3rd Characterization of the gene urf13-T and an unidentified reading frame, ORF 25, in maize and tobacco mitochondria. Curr Genet. 1987;12(6):457–463. doi: 10.1007/BF00434824. [DOI] [PubMed] [Google Scholar]
  90. Stiller J. W., Hall B. D. The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4520–4525. doi: 10.1073/pnas.94.9.4520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Thöny-Meyer L., Stax D., Hennecke H. An unusual gene cluster for the cytochrome bc1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell. 1989 May 19;57(4):683–697. doi: 10.1016/0092-8674(89)90137-2. [DOI] [PubMed] [Google Scholar]
  93. Turmel M., Boulanger J., Schnare M. N., Gray M. W., Lemieux C. Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos. J Mol Biol. 1991 Mar 20;218(2):293–311. doi: 10.1016/0022-2836(91)90713-g. [DOI] [PubMed] [Google Scholar]
  94. Turmel M., Côté V., Otis C., Mercier J. P., Gray M. W., Lonergan K. M., Lemieux C. Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion). Mol Biol Evol. 1995 Jul;12(4):533–545. doi: 10.1093/oxfordjournals.molbev.a040234. [DOI] [PubMed] [Google Scholar]
  95. Vaughn J. C., Mason M. T., Sper-Whitis G. L., Kuhlman P., Palmer J. D. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia. J Mol Evol. 1995 Nov;41(5):563–572. doi: 10.1007/BF00175814. [DOI] [PubMed] [Google Scholar]
  96. Weber B., Börner T., Weihe A. Remnants of a DNA polymerase gene in the mitochondrial DNA of Marchantia polymorpha. Curr Genet. 1995 Apr;27(5):488–490. doi: 10.1007/BF00311221. [DOI] [PubMed] [Google Scholar]
  97. Weiner J. H., Bilous P. T., Shaw G. M., Lubitz S. P., Frost L., Thomas G. H., Cole J. A., Turner R. J. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell. 1998 Apr 3;93(1):93–101. doi: 10.1016/s0092-8674(00)81149-6. [DOI] [PubMed] [Google Scholar]
  98. Wolff G., Plante I., Lang B. F., Kück U., Burger G. Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. Gene content and genome organization. J Mol Biol. 1994 Mar 18;237(1):75–86. doi: 10.1006/jmbi.1994.1210. [DOI] [PubMed] [Google Scholar]
  99. Wolstenholme D. R. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 1992;141:173–216. doi: 10.1016/s0074-7696(08)62066-5. [DOI] [PubMed] [Google Scholar]
  100. Xiong Y., Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Yun C. H., Beci R., Crofts A. R., Kaplan S., Gennis R. B. Cloning and DNA sequencing of the fbc operon encoding the cytochrome bc1 complex from Rhodobacter sphaeroides. Characterization of fbc deletion mutants and complementation by a site-specific mutational variant. Eur J Biochem. 1990 Dec 12;194(2):399–411. doi: 10.1111/j.1432-1033.1990.tb15633.x. [DOI] [PubMed] [Google Scholar]
  102. Zhou Y. H., Ragan M. A. The nuclear gene and cDNAs encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa: cloning, characterization and phylogenetic analysis. Curr Genet. 1995 Sep;28(4):324–332. doi: 10.1007/BF00326430. [DOI] [PubMed] [Google Scholar]
  103. de Zamaroczy M., Bernardi G. The primary structure of the mitochondrial genome of Saccharomyces cerevisiae--a review. Gene. 1986;47(2-3):155–177. doi: 10.1016/0378-1119(86)90060-0. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES