Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Oct;10(10):1699–1712. doi: 10.1105/tpc.10.10.1699

A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen.

S C Zeeman 1, T Umemoto 1, W L Lue 1, P Au-Yeung 1, C Martin 1, A M Smith 1, J Chen 1
PMCID: PMC144351  PMID: 9761796

Abstract

In this study, our goal was to evaluate the role of starch debranching enzymes in the determination of the structure of amylopectin. We screened mutant populations of Arabidopsis for plants with alterations in the structure of leaf starch by using iodine staining. The leaves of two mutant lines stained reddish brown, whereas wild-type leaves stained brownish black, indicating that a more highly branched polyglucan than amylopectin was present. The mutants were allelic, and the mutation mapped to position 18.8 on chromosome 1. One mutant line lacked the transcript for a gene with sequence similarity to higher plant debranching enzymes, and both mutants lacked a chloroplastic starch-hydrolyzing enzyme. This enzyme was identified as a debranching enzyme of the isoamylase type. The loss of this isoamylase resulted in a 90% reduction in the accumulation of starch in this mutant line when compared with the wild type and in the accumulation of the highly branched water-soluble polysaccharide phytoglycogen. Both normal starch and phytoglycogen accumulated simultaneously in the same chloroplasts in the mutant lines, suggesting that isoamylase has an indirect rather than a direct role in determining amylopectin structure.

Full Text

The Full Text of this article is available as a PDF (370.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball S., Guan H. P., James M., Myers A., Keeling P., Mouille G., Buléon A., Colonna P., Preiss J. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell. 1996 Aug 9;86(3):349–352. doi: 10.1016/s0092-8674(00)80107-5. [DOI] [PubMed] [Google Scholar]
  2. Barnes S. A., Nishizawa N. K., Quaggio R. B., Whitelam G. C., Chua N. H. Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell. 1996 Apr;8(4):601–615. doi: 10.1105/tpc.8.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyer C. D., Preiss J. Multiple forms of starch branching enzyme of maize: evidence for independent genetic control. Biochem Biophys Res Commun. 1978 Jan 13;80(1):169–175. doi: 10.1016/0006-291x(78)91119-1. [DOI] [PubMed] [Google Scholar]
  4. Caspar T., Lin T. P., Kakefuda G., Benbow L., Preiss J., Somerville C. Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol. 1991 Apr;95(4):1181–1188. doi: 10.1104/pp.95.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craig J., Lloyd J. R., Tomlinson K., Barber L., Edwards A., Wang T. L., Martin C., Hedley C. L., Smith A. M. Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. Plant Cell. 1998 Mar;10(3):413–426. doi: 10.1105/tpc.10.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edwards A., Marshall J., Sidebottom C., Visser R. G., Smith A. M., Martin C. Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J. 1995 Aug;8(2):283–294. doi: 10.1046/j.1365-313x.1995.08020283.x. [DOI] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Gao M., Wanat J., Stinard P. S., James M. G., Myers A. M. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell. 1998 Mar;10(3):399–412. doi: 10.1105/tpc.10.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guan H. P., Preiss J. Differentiation of the Properties of the Branching Isozymes from Maize (Zea mays). Plant Physiol. 1993 Aug;102(4):1269–1273. doi: 10.1104/pp.102.4.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. James M. G., Robertson D. S., Myers A. M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell. 1995 Apr;7(4):417–429. doi: 10.1105/tpc.7.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kakefuda G., Duke S. H. Electrophoretic transfer as a technique for the detection and identification of plant amylolytic enzymes in polyacrylamide gels. Plant Physiol. 1984 May;75(1):278–280. doi: 10.1104/pp.75.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin T. P., Preiss J. Characterization of d-Enzyme (4-alpha-Glucanotransferase) in Arabidopsis Leaf. Plant Physiol. 1988 Jan;86(1):260–265. doi: 10.1104/pp.86.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin C., Carpenter R., Sommer H., Saedler H., Coen E. S. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J. 1985 Jul;4(7):1625–1630. doi: 10.1002/j.1460-2075.1985.tb03829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matheson N. K. The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally-nocturnally. Carbohydr Res. 1996 Mar 18;282(2):247–262. doi: 10.1016/0008-6215(95)00381-9. [DOI] [PubMed] [Google Scholar]
  15. Mouille G., Maddelein M. L., Libessart N., Talaga P., Decq A., Delrue B., Ball S. Preamylopectin Processing: A Mandatory Step for Starch Biosynthesis in Plants. Plant Cell. 1996 Aug;8(8):1353–1366. doi: 10.1105/tpc.8.8.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakamura Y., Umemoto T., Ogata N., Kuboki Y., Yano M., Sasaki T. Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm: purification, cDNA and chromosomal localization of the gene. Planta. 1996;199(2):209–218. doi: 10.1007/BF00196561. [DOI] [PubMed] [Google Scholar]
  17. Pan D., Nelson O. E. A debranching enzyme deficiency in endosperms of the sugary-1 mutants of maize. Plant Physiol. 1984 Feb;74(2):324–328. doi: 10.1104/pp.74.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rahman A., Wong K. s., Jane J. l., Myers A. M., James M. G. Characterization of SU1 isoamylase, a determinant of storage starch structure in maize. Plant Physiol. 1998 Jun;117(2):425–435. doi: 10.1104/pp.117.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robertson J. G., Lyttleton P., Williamson K. I., Batt R. D. The effect of fixation procedures on the electron density of polysaccharide granules in Nocardia corallina. J Ultrastruct Res. 1975 Sep;52(3):321–332. doi: 10.1016/s0022-5320(75)80072-4. [DOI] [PubMed] [Google Scholar]
  20. Singletary G. W., Banisadr R., Keeling P. L. Influence of Gene Dosage on Carbohydrate Synthesis and Enzymatic Activities in Endosperm of Starch-Deficient Mutants of Maize. Plant Physiol. 1997 Jan;113(1):293–304. doi: 10.1104/pp.113.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith A. M., Denyer K., Martin C. THE SYNTHESIS OF THE STARCH GRANULE. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):67–87. doi: 10.1146/annurev.arplant.48.1.67. [DOI] [PubMed] [Google Scholar]
  22. Sun Z., Duke S. H., Henson C. A. The Role of Pea Chloroplast [alpha]-Glucosidase in Transitory Starch Degradation. Plant Physiol. 1995 May;108(1):211–217. doi: 10.1104/pp.108.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang S. M., Chu B., Lue W. L., Yu T. S., Eimert K., Chen J. adg2-1 represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thaliana. Plant J. 1997 May;11(5):1121–1126. doi: 10.1046/j.1365-313x.1997.11051121.x. [DOI] [PubMed] [Google Scholar]
  24. Zeeman S. C., Northrop F., Smith A. M., Rees T. A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. Plant J. 1998 Aug;15(3):357–365. doi: 10.1046/j.1365-313x.1998.00213.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES