Skip to main content
British Medical Journal (Clinical Research Ed.) logoLink to British Medical Journal (Clinical Research Ed.)
. 1984 Jan 28;288(6413):259–261. doi: 10.1136/bmj.288.6413.259

Opioid peptides.

J W Thompson
PMCID: PMC1444041  PMID: 6140977

Full text

PDF
259

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atweh S. F., Kuhar M. J. Distribution and physiological significance of opioid receptors in the brain. Br Med Bull. 1983 Jan;39(1):47–52. doi: 10.1093/oxfordjournals.bmb.a071789. [DOI] [PubMed] [Google Scholar]
  2. Barnard E. A., Demoliou-Mason C. Molecular properties of opioid receptors. Br Med Bull. 1983 Jan;39(1):37–45. doi: 10.1093/oxfordjournals.bmb.a071788. [DOI] [PubMed] [Google Scholar]
  3. Birdsall N. J., Hulme E. C. C fragment of lipotropin has a high affinity for brain opiate receptors. Nature. 1976 Apr 29;260(5554):793–795. doi: 10.1038/260793a0. [DOI] [PubMed] [Google Scholar]
  4. Bowen W. D., Gentleman S., Herkenham M., Pert C. B. Interconverting mu and delta forms of the opiate receptor in rat striatal patches. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4818–4822. doi: 10.1073/pnas.78.8.4818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchsbaum M. S., Davis G. C., Bunney W. E., Jr Naloxone alters pain perception and somatosensory evoked potentials in normal subjects. Nature. 1977 Dec 15;270(5638):620–622. doi: 10.1038/270620a0. [DOI] [PubMed] [Google Scholar]
  6. Clement-Jones V., Besser G. M. Clinical perspectives in opioid peptides. Br Med Bull. 1983 Jan;39(1):95–100. doi: 10.1093/oxfordjournals.bmb.a071798. [DOI] [PubMed] [Google Scholar]
  7. Djamgoz M. B., Stell W. K., Chin C. A., Lam D. M. An opiate system in the goldfish retina. Nature. 1981 Aug 13;292(5824):620–623. doi: 10.1038/292620a0. [DOI] [PubMed] [Google Scholar]
  8. Duggan A. W. Electrophysiology of opioid peptides and sensory systems. Br Med Bull. 1983 Jan;39(1):65–70. doi: 10.1093/oxfordjournals.bmb.a071793. [DOI] [PubMed] [Google Scholar]
  9. Goldstein A., Fischli W., Lowney L. I., Hunkapiller M., Hood L. Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7219–7223. doi: 10.1073/pnas.78.11.7219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grossman A., Rees L. H. The neuroendocrinology of opioid peptides. Br Med Bull. 1983 Jan;39(1):83–88. doi: 10.1093/oxfordjournals.bmb.a071796. [DOI] [PubMed] [Google Scholar]
  11. Henderson G. Electrophysiological analysis of opioid action in the central nervous system. Br Med Bull. 1983 Jan;39(1):59–64. doi: 10.1093/oxfordjournals.bmb.a071792. [DOI] [PubMed] [Google Scholar]
  12. Henschen A., Lottspeich F., Brantl V., Teschemacher H. Novel opioid peptides derived from casein (beta-casomorphins). II. Structure of active components from bovine casein peptone. Hoppe Seylers Z Physiol Chem. 1979 Sep;360(9):1217–1224. [PubMed] [Google Scholar]
  13. Hughes J. Biogenesis, release and inactivation of enkephalins and dynorphins. Br Med Bull. 1983 Jan;39(1):17–24. doi: 10.1093/oxfordjournals.bmb.a071785. [DOI] [PubMed] [Google Scholar]
  14. Hughes J., Kosterlitz H. W. Opioid Peptides: introduction. Br Med Bull. 1983 Jan;39(1):1–3. doi: 10.1093/oxfordjournals.bmb.a071781. [DOI] [PubMed] [Google Scholar]
  15. Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975 Dec 18;258(5536):577–580. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
  16. Kangawa K., Minamino N., Chino N., Sakakibara S., Matsuo H. The complete amino acid sequence of alpha-neo-endorphin. Biochem Biophys Res Commun. 1981 Apr 15;99(3):871–878. doi: 10.1016/0006-291x(81)91244-4. [DOI] [PubMed] [Google Scholar]
  17. Kilpatrick D. L., Taniguchi T., Jones B. N., Stern A. S., Shively J. E., Hullihan J., Kimura S., Stein S., Udenfriend S. A highly potent 3200-dalton adrenal opioid peptide that contains both a [Met]- and [Leu]enkephalin sequence. Proc Natl Acad Sci U S A. 1981 May;78(5):3265–3268. doi: 10.1073/pnas.78.5.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koob G. F., Bloom F. E. Behavioural effects of opioid peptides. Br Med Bull. 1983 Jan;39(1):89–94. doi: 10.1093/oxfordjournals.bmb.a071797. [DOI] [PubMed] [Google Scholar]
  19. Kosterlitz H. W., Watt A. J. Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br J Pharmacol Chemother. 1968 Jun;33(2):266–276. doi: 10.1111/j.1476-5381.1968.tb00988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee N. M., Friedman H. J., Leybin L., Cho T. M., Loh H. H., Li C. H. Peptide inhibitor of morphine- and beta-endorphin-induced analgesia. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5525–5526. doi: 10.1073/pnas.77.9.5525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li C. H., Chung D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1145–1148. doi: 10.1073/pnas.73.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ling N., Burgus R., Guillemin R. Isolation, primary structure, and synthesis of alpha-endorphin and gamma-endorphin, two peptides of hypothalamic-hypophysial origin with morphinomimetic activity. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3942–3946. doi: 10.1073/pnas.73.11.3942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McQueen D. S. Opioid peptide interactions with respiratory and circulatory systems. Br Med Bull. 1983 Jan;39(1):77–82. doi: 10.1093/oxfordjournals.bmb.a071795. [DOI] [PubMed] [Google Scholar]
  24. Morita K., North R. A. Opiates and enkephalin reduce the excitability of neuronal processes. Neuroscience. 1981;6(10):1943–1951. doi: 10.1016/0306-4522(81)90034-8. [DOI] [PubMed] [Google Scholar]
  25. Morley J. S. Chemistry of opioid peptides. Br Med Bull. 1983 Jan;39(1):5–10. doi: 10.1093/oxfordjournals.bmb.a071790. [DOI] [PubMed] [Google Scholar]
  26. Nicoll R. A., Alger B. E., Jahr C. E. Enkephalin blocks inhibitory pathways in the vertebrate CNS. Nature. 1980 Sep 4;287(5777):22–25. doi: 10.1038/287022a0. [DOI] [PubMed] [Google Scholar]
  27. Nicoll R. A., Siggins G. R., Ling N., Bloom F. E., Guillemin R. Neuronal actions of endorphins and enkephalins among brain regions: a comparative microiontophoretic study. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2584–2588. doi: 10.1073/pnas.74.6.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. North R. A., Tonini M. The mechanism of action of narcotic analgesics in the guinea-pig ileum. Br J Pharmacol. 1977 Dec;61(4):541–549. doi: 10.1111/j.1476-5381.1977.tb07546.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. PATON W. D. The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol Chemother. 1957 Mar;12(1):119–127. doi: 10.1111/j.1476-5381.1957.tb01373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pasternak G. W. High and low affinity opioid binding sites: relationship to mu and delta sites. Life Sci. 1982 Sep 20;31(12-13):1303–1306. doi: 10.1016/0024-3205(82)90367-8. [DOI] [PubMed] [Google Scholar]
  31. Paterson S. J., Robson L. E., Kosterlitz H. W. Classification of opioid receptors. Br Med Bull. 1983 Jan;39(1):31–36. doi: 10.1093/oxfordjournals.bmb.a071787. [DOI] [PubMed] [Google Scholar]
  32. Pert C. B., Snyder S. H. Opiate receptor: demonstration in nervous tissue. Science. 1973 Mar 9;179(4077):1011–1014. doi: 10.1126/science.179.4077.1011. [DOI] [PubMed] [Google Scholar]
  33. Peters W. P., Johnson M. W., Friedman P. A., Mitch W. E. Pressor effect of naloxone in septic shock. Lancet. 1981 Mar 7;1(8219):529–532. doi: 10.1016/s0140-6736(81)92865-8. [DOI] [PubMed] [Google Scholar]
  34. SCHAUMANN W. Influence of atropine and morphine on the liberation of acetylcholine from the guinea pig's intestine. Nature. 1956 Nov 17;178(4542):1121–1122. doi: 10.1038/1781121b0. [DOI] [PubMed] [Google Scholar]
  35. Simon E. J., Hiller J. M., Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1947–1949. doi: 10.1073/pnas.70.7.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Terenius L. Stereospecific interaction between narcotic analgesics and a synaptic plasm a membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol (Copenh) 1973;32(3):317–320. doi: 10.1111/j.1600-0773.1973.tb01477.x. [DOI] [PubMed] [Google Scholar]
  37. Watkins L. R., Mayer D. J. Organization of endogenous opiate and nonopiate pain control systems. Science. 1982 Jun 11;216(4551):1185–1192. doi: 10.1126/science.6281891. [DOI] [PubMed] [Google Scholar]
  38. Wouters W., van den Bercken J. Effects of met-enkephalin on slow synaptic inhibition in frog sympathetic ganglion. Neuropharmacology. 1980 Mar;19(3):237–243. doi: 10.1016/0028-3908(80)90145-8. [DOI] [PubMed] [Google Scholar]
  39. Wouters W., van den Bercken J. Hypepolarisation and depression of slow synaptic inhibition by enkephalin in frog sympathetic ganglion. Nature. 1979 Jan 4;277(5691):53–54. doi: 10.1038/277053a0. [DOI] [PubMed] [Google Scholar]
  40. Zieglgänsberger W., French E. D., Siggins G. R., Bloom F. E. Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science. 1979 Jul 27;205(4404):415–417. doi: 10.1126/science.451610. [DOI] [PubMed] [Google Scholar]

Articles from British Medical Journal (Clinical research ed.) are provided here courtesy of BMJ Publishing Group

RESOURCES