Skip to main content
Immunology logoLink to Immunology
. 1976 Jul;31(1):27–32.

Specific immune lysis of paramyxovirus-infected cells by H-2-compatible thymus-derived lymphocytes.

P C Doherty, R M Zinkernagel
PMCID: PMC1445101  PMID: 194830

Abstract

Mice exposed to paramyxovirus (Sendai) generate specifically sensitized thymus-derived lymphocytes (T cells) which, in an in vitro 51Cr release assay, interact only with virus-infected target cells sharing strong transplantation antigens. Reciprocal exclusion of cytotoxic T-cell activity is found for Sendai virus, lymphocytic choriomeningitis virus and ectromelia virus. Immune T cells are detected as early as 3 days after intraperitoneal inoculation with a large dose of Sendai virus, and cytotoxicity is generally maximal on days 5-7. Lysis is restricted to interactions where sensitized lymphocytes and virus-infected target cells (fibroblasts, tumour cells or macrophages) are compatible at the K or the D locus of one H-2 haplotype. Identity of immune response (Ir) genes is neither sufficient nor necessary. Levels of T-cell responsiveness show some variation with H-2 type. Cytotoxic T-cell activity associated with H-2b is less than that recognized for H-2k or H-2d. These differences are, however, not obviously related to Ir gene control.

Full text

PDF
27

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson T., Stejskal V., Harfast B. An in vitro method for study of human lymphocyte cytotoxicity against mumps-virus-infected target cells. J Immunol. 1975 Jan;114(1 Pt 1):237–243. [PubMed] [Google Scholar]
  2. Bevan M. J. Interaction antigens detected by cytotoxic T cells with the major histocompatibility complex as modifier. Nature. 1975 Jul 31;256(5516):419–421. doi: 10.1038/256419a0. [DOI] [PubMed] [Google Scholar]
  3. Blanden R. V., Doherty P. C., Dunlop M. B., Gardner I. D., Zinkernagel R. M., David C. S. Genes required for cytotoxicity against virus-infected target cells in K and D regions of H-2 complex. Nature. 1975 Mar 20;254(5497):269–270. doi: 10.1038/254269a0. [DOI] [PubMed] [Google Scholar]
  4. Blandford G., Heath R. B. Studies on the immune response and pathogenesis of Sendai virus infection of mice. I. The fate of viral antigens. Immunology. 1972 Apr;22(4):637–649. [PMC free article] [PubMed] [Google Scholar]
  5. Chesebro B., Wehrly K., Stimpfling J. Host genetic control of recovery from Friend leukemia virus-induced splenomegaly: mapping of a gene within the major histocompatability complex. J Exp Med. 1974 Dec 1;140(6):1457–1467. doi: 10.1084/jem.140.6.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doherty P. C., Zinkernagel R. M. H-2 compatibility is required for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. J Exp Med. 1975 Feb 1;141(2):502–507. doi: 10.1084/jem.141.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doherty P. C., Zinkernagel R. M., Ramshaw I. A. Specificity and development of cytotoxic thymus-derived lymphocytes in lymphocytic choriomeningitis. J Immunol. 1974 Apr;112(4):1548–1552. [PubMed] [Google Scholar]
  8. Gardner I., Bowern N. A., Blanden R. V. Cell-mediated cytotoxicity against ectromelia virus-infected target cells. II. Identification of effector cells and analysis of mechanisms. Eur J Immunol. 1974 Feb;4(2):68–72. doi: 10.1002/eji.1830040203. [DOI] [PubMed] [Google Scholar]
  9. Gordon R. D., Simpson E., Samelson L. E. In vitro cell-mediated immune responses to the male specific(H-Y) antigen in mice. J Exp Med. 1975 Nov 1;142(5):1108–1120. doi: 10.1084/jem.142.5.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katz D. H., Benacerraf B. The function and interrelationships of T-cell receptors, Ir genes and other histocompatibility gene products. Transplant Rev. 1975;22:175–195. doi: 10.1111/j.1600-065x.1975.tb01559.x. [DOI] [PubMed] [Google Scholar]
  11. Koszinowski U., Ertl H. Lysis mediated by T cells and restricted by H-2 antigen of target cells infected with vaccinia virus. Nature. 1975 Jun 12;255(5509):552–554. doi: 10.1038/255552a0. [DOI] [PubMed] [Google Scholar]
  12. Kreth W. H., Käckell M. Y., ter Meulen V. Demonstration of in vitro lymphocyte-mediated cytotoxicity against measles virus in SSPE. J Immunol. 1975 Mar;114(3):1042–1046. [PubMed] [Google Scholar]
  13. Labowskie R., Edelman R., Rustigian R., Bellanti J. A. Studies of cell-mediated immunity to measles virus by in vitro lymphocyte-mediated cytotoxicity. J Infect Dis. 1974 Mar;129(3):233–239. doi: 10.1093/infdis/129.3.233. [DOI] [PubMed] [Google Scholar]
  14. McDevitt H. O., Oldstone B. A., Pincus T. Histocompatibility-linked genetic control of specific immune responses to viral infection. Transplant Rev. 1974;19(0):209–225. doi: 10.1111/j.1600-065x.1974.tb00133.x. [DOI] [PubMed] [Google Scholar]
  15. Mühlbock O., Dux A. Histocompatibility genes (the H-2 complex) and susceptibility to mammary tumor virus in mice. J Natl Cancer Inst. 1974 Oct;53(4):993–996. [PubMed] [Google Scholar]
  16. Perlmann P., Perlmann H., Wigzell H. Lymphocyte mediated cytotoxicity in vitro. Induction and inhibition by humoral antibody and nature of effector cells. Transplant Rev. 1972;13:91–114. doi: 10.1111/j.1600-065x.1972.tb00061.x. [DOI] [PubMed] [Google Scholar]
  17. Ramshaw I. A. Lysis of herpesvirus-infected cells by immune spleen cells. Infect Immun. 1975 Apr;11(4):767–769. doi: 10.1128/iai.11.4.767-769.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rola-Pleszczynski M., Hurtado R. C., Woody J. N., Sell K. W., Vincent M. M., Hensen S. A., Bellanti J. A. Identification of the cell population involved in viral-specific cell-mediated cytotoxicity in man: evidence for T cell specificity. J Immunol. 1975 Jul;115(1):239–242. [PubMed] [Google Scholar]
  19. Shreffler D. C., David C. S. The H-2 major histocompatibility complex and the I immune response region: genetic variation, function, and organization. Adv Immunol. 1975;20:125–195. doi: 10.1016/s0065-2776(08)60208-4. [DOI] [PubMed] [Google Scholar]
  20. Steele R. W., Hensen S. A., Vincent M. M., Fuccillo D. A., Bellanti J. A. A 51 Cr microassay technique for cell-mediated immunity to viruses. J Immunol. 1973 Jun;110(6):1502–1510. [PubMed] [Google Scholar]
  21. Wainberg M. A., Markson Y., Weiss D. W., Doljanski F. Cellular immunity against Rous sarcomas of chickens. Preferential reactivity against autochthonous target cells as determined by lymphocyte adherence and cytotoxicity tests in vitro. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3565–3569. doi: 10.1073/pnas.71.9.3565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zinkernagel R. M., Doherty P. C. Characteristics of the interaction in vitro between cytotoxic thymus-derived lymphocytes and target monolayers infected with lymphocytic choriomeningitis virus. Scand J Immunol. 1974;3(3):287–294. doi: 10.1111/j.1365-3083.1974.tb01259.x. [DOI] [PubMed] [Google Scholar]
  23. Zinkernagel R. M., Doherty P. C. H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D;. J Exp Med. 1975 Jun 1;141(6):1427–1436. doi: 10.1084/jem.141.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zinkernagel R. M., Doherty P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974 Apr 19;248(5450):701–702. doi: 10.1038/248701a0. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES