Skip to main content
Immunology logoLink to Immunology
. 1977 Apr;32(4):513–519.

Antibody formation in mouse bone marrow*

VI. The regulating influence of the spleen on the bone marrow plaque-forming cell response to Escherichia coli lipopolysaccharide

Reviewed by: R Benner, A Van Oudenaren
PMCID: PMC1445477  PMID: 344201

Abstract

Mouse bone marrow is capable of a distinct plaque-forming cell (PFC) response after i.v. immunization with the thymus-independent antigen E. coli lipopolysaccharide (LPS). Both during the primary and secondary response to i.v. administered LPS the spleen contained the majority of PFC until about 5 days after immunization. In the course of the reaction the number of PFC in the bone marrow rose to a level which surpassed the level in the spleen. This paper deals with the regulating influence of the spleen on the primary and secondary anti-LPS PFC response in the bone marrow.

Splenectomy prior to the first injection of 5 μg LPS i.v. initially did not affect the bone marrow PFC response. However, at the 7th day after immunization the PFC response in the bone marrow fell to only 10 per cent of the bone marrow PFC activity in sham-splenectomized mice. In contrast to the primary response no regulating influence of the spleen on the bone marrow PFC activity could be demonstrated during the secondary response. The influence of splenectomy on the appearance of B-memory cells in the bone marrow depended on the priming dose. The appearance of LPS-specific B-memory cells in the bone marrow was not affected by splenectomy at priming doses of LPS as high as 1 and 0.1 μg. On the other hand splenectomy before 0.01 μg LPS i.v. reduced, and splenectomy prior to 0.001 μg LPS i.v. completely prevented the appearance of B-memory cells in the bone marrow.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B., Blomgren H. Evidence for thymus-independent humoral antibody production in mice against polyvinylpyrrolidone and E. coli lipopolysaccharide. Cell Immunol. 1971 Oct;2(5):411–424. doi: 10.1016/0008-8749(71)90052-9. [DOI] [PubMed] [Google Scholar]
  2. Asherson G. L., Zembala M. Anatomical location of cells which mediate contact sensitivity in the lympho nodes and bone marrow. Nat New Biol. 1973 Aug 8;244(136):176–177. doi: 10.1038/newbio244176a0. [DOI] [PubMed] [Google Scholar]
  3. Asherson G. L., Zembala M., Mayhew B. Passive transfer of contact sensitivity by bone marrow cells and evidence for their origin from immunized lymph nodes. Int Arch Allergy Appl Immunol. 1974;46(2):256–260. doi: 10.1159/000231128. [DOI] [PubMed] [Google Scholar]
  4. Benner R., Meima F., Van der Meulen G. M., van Ewijk W. Antibody formation in mouse bone marrow. III. Effects of route of priming and antigen dose. Immunology. 1974 Nov;27(5):747–760. [PMC free article] [PubMed] [Google Scholar]
  5. Benner R., Meima F., van der Meulen G. M. Antibody formation in mouse bone marrow. II. Evidence for a memory-dependent phenomenon. Cell Immunol. 1974 Jul;13(1):95–106. doi: 10.1016/0008-8749(74)90230-5. [DOI] [PubMed] [Google Scholar]
  6. Benner R., Meima F., van der Meulen G. M., van Muiswinkel W. B. Antibody formation in mouse bone marrow. I. Evidence for the development of plaque-forming cells in situ. Immunology. 1974 Feb;26(2):247–255. [PMC free article] [PubMed] [Google Scholar]
  7. Benner R., van Oudenaren A. Antibody formation in mouse bone marrow. IV. The influence of splenectomy on the bone marrow plaque-forming cell response to sheep red blood cells. Cell Immunol. 1975 Oct;19(2):167–182. doi: 10.1016/0008-8749(75)90201-4. [DOI] [PubMed] [Google Scholar]
  8. Bröcker E. B., Müller-Ruchholtz W. Presence and kinetics of sensitized cells in different tissue compartments. Int Arch Allergy Appl Immunol. 1975;49(5):607–614. doi: 10.1159/000231442. [DOI] [PubMed] [Google Scholar]
  9. Chaperon E. A., Selner J. C., Claman H. N. Migration of antibody-forming cells and antigen-sensitive precursors between spleen, thymus and bone marrow. Immunology. 1968 Apr;14(4):553–561. [PMC free article] [PubMed] [Google Scholar]
  10. Chervenick P. A., Boggs D. R., Marsh J. C., Cartwright G. E., Wintrobe M. M. Quantitative studies of blood and bone marrow neutrophils in normal mice. Am J Physiol. 1968 Aug;215(2):353–360. doi: 10.1152/ajplegacy.1968.215.2.353. [DOI] [PubMed] [Google Scholar]
  11. Donnelly N., Sussdorf D. H. Antigen-binding cells in central and peripheral lymphoid tissues of the rabbit. Cell Immunol. 1975 Feb;15(2):294–302. doi: 10.1016/0008-8749(75)90008-8. [DOI] [PubMed] [Google Scholar]
  12. Hijmans W., Schuit H. R. Immunofluorescence studies on immunoglobulins in the lymphoid cells of human peripheral blood. Clin Exp Immunol. 1972 Aug;11(4):483–494. [PMC free article] [PubMed] [Google Scholar]
  13. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Möller G., Michael G. Frequency of antigen-sensitive cells to thymus-independent antigens. Cell Immunol. 1971 Aug;2(4):309–316. doi: 10.1016/0008-8749(71)90065-7. [DOI] [PubMed] [Google Scholar]
  15. Spiegelberg H. L. Biological activities of immunoglobulins of different classes and subclasses. Adv Immunol. 1974;19(0):259–294. doi: 10.1016/s0065-2776(08)60254-0. [DOI] [PubMed] [Google Scholar]
  16. Williamson A. R. Extent and control of antibody diversity. Biochem J. 1972 Nov;130(2):325–333. doi: 10.1042/bj1300325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Youdim S., Stuntman O., Good R. A. Thymus dependency of cells involved in transfer of delayed hypersensitivity to Listeria monocytogenes in mice. Cell Immunol. 1973 Sep;8(3):395–402. doi: 10.1016/0008-8749(73)90129-9. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES