Abstract
Measles eradication would avert the current annual 1 million deaths and save the $1.5 billion in treatment and prevention costs due to measles in perpetuity. The authors evaluate the biological feasibility of eradicating measles according to 4 criteria: (1) the role of humans in maintaining transmission, (2) the availability of accurate diagnostic tests, (3) the existence of effective vaccines, and (4) the need to demonstrate elimination of measles from a large geographic area. Recent successes in interrupting measles transmission in the United States, most other countries in the Western Hemisphere, and selected countries in other regions provide evidence for the feasibility of global eradication. Potential impediments to eradication include (1) lack of political will in some industrialized countries, (2) transmission among adults, (3) increasing urbanization and population density, (4) the HIV epidemic, (5) waning immunity and the possibility of transmission from subclinical cases, and (6) risk of unsafe injections. Despite these challenges, a compelling case can be made in favor of measles eradication, and the authors believe that it is in our future. The question is when.
Full Text
The Full Text of this article is available as a PDF (97.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anders J. F., Jacobson R. M., Poland G. A., Jacobsen S. J., Wollan P. C. Secondary failure rates of measles vaccines: a metaanalysis of published studies. Pediatr Infect Dis J. 1996 Jan;15(1):62–66. doi: 10.1097/00006454-199601000-00014. [DOI] [PubMed] [Google Scholar]
- Anderson R. M., May R. M. Vaccination and herd immunity to infectious diseases. 1985 Nov 28-Dec 4Nature. 318(6044):323–329. doi: 10.1038/318323a0. [DOI] [PubMed] [Google Scholar]
- Black F. L. Measles endemicity in insular populations: critical community size and its evolutionary implication. J Theor Biol. 1966 Jul;11(2):207–211. doi: 10.1016/0022-5193(66)90161-5. [DOI] [PubMed] [Google Scholar]
- Brandling-Bennett A. D., Landrigan P. J., Baker E. L. Failure of vaccinated children to transmit measles. JAMA. 1973 Apr 30;224(5):616–618. [PubMed] [Google Scholar]
- Cisse B., Aaby P., Simondon F., Samb B., Soumaré M., Whittle H. Role of schools in the transmission of measles in rural Senegal: implications for measles control in developing countries. Am J Epidemiol. 1999 Feb 15;149(4):295–301. doi: 10.1093/oxfordjournals.aje.a009811. [DOI] [PubMed] [Google Scholar]
- Cohen J. South Africa's new enemy. Science. 2000 Jun 23;288(5474):2168–2170. doi: 10.1126/science.288.5474.2168. [DOI] [PubMed] [Google Scholar]
- Cutts F. T., Clements C. J., Bennett J. V. Alternative routes of measles immunization: a review. Biologicals. 1997 Sep;25(3):323–338. doi: 10.1006/biol.1997.0103. [DOI] [PubMed] [Google Scholar]
- Cutts F. T., Grabowsky M., Markowitz L. E. The effect of dose and strain of live attenuated measles vaccines on serological responses in young infants. Biologicals. 1995 Mar;23(1):95–106. doi: 10.1016/1045-1056(95)90018-7. [DOI] [PubMed] [Google Scholar]
- Erdman D. D., Anderson L. J., Adams D. R., Stewart J. A., Markowitz L. E., Bellini W. J. Evaluation of monoclonal antibody-based capture enzyme immunoassays for detection of specific antibodies to measles virus. J Clin Microbiol. 1991 Jul;29(7):1466–1471. doi: 10.1128/jcm.29.7.1466-1471.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erdman D. D., Heath J. L., Watson J. C., Markowitz L. E., Bellini W. J. Immunoglobulin M antibody response to measles virus following primary and secondary vaccination and natural virus infection. J Med Virol. 1993 Sep;41(1):44–48. doi: 10.1002/jmv.1890410110. [DOI] [PubMed] [Google Scholar]
- Güriş D., McCready J., Watson J. C., Atkinson W. L., Heath J. L., Bellini W. J., Polloi A. Measles vaccine effectiveness and duration of vaccine-induced immunity in the absence of boosting from exposure to measles virus. Pediatr Infect Dis J. 1996 Dec;15(12):1082–1086. doi: 10.1097/00006454-199612000-00005. [DOI] [PubMed] [Google Scholar]
- Helfand R. F., Heath J. L., Anderson L. J., Maes E. F., Guris D., Bellini W. J. Diagnosis of measles with an IgM capture EIA: the optimal timing of specimen collection after rash onset. J Infect Dis. 1997 Jan;175(1):195–199. doi: 10.1093/infdis/175.1.195. [DOI] [PubMed] [Google Scholar]
- Hennessey K. A., Ion-Nedelcu N., Craciun M. D., Toma F., Wattigney W., Strebel P. M. Measles epidemic in Romania, 1996-1998: assessment of vaccine effectiveness by case-control and cohort studies. Am J Epidemiol. 1999 Dec 1;150(11):1250–1257. doi: 10.1093/oxfordjournals.aje.a009952. [DOI] [PubMed] [Google Scholar]
- Hersh B. S., Tambini G., Nogueira A. C., Carrasco P., de Quadros C. A. Review of regional measles surveillance data in the Americas, 1996-99. Lancet. 2000 Jun 3;355(9219):1943–1948. doi: 10.1016/S0140-6736(00)02325-4. [DOI] [PubMed] [Google Scholar]
- Kaufmann A. F. A program for surveillance of nonhuman primate disease. Lab Anim Sci. 1971 Dec;21(6):1061–1067. [PubMed] [Google Scholar]
- King G. E., Markowitz L. E., Patriarca P. A., Dales L. G. Clinical efficacy of measles vaccine during the 1990 measles epidemic. Pediatr Infect Dis J. 1991 Dec;10(12):883–888. doi: 10.1097/00006454-199112000-00001. [DOI] [PubMed] [Google Scholar]
- Kobune F., Sakata H., Sugiura A. Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol. 1990 Feb;64(2):700–705. doi: 10.1128/jvi.64.2.700-705.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markowitz L. E., Preblud S. R., Fine P. E., Orenstein W. A. Duration of live measles vaccine-induced immunity. Pediatr Infect Dis J. 1990 Feb;9(2):101–110. doi: 10.1097/00006454-199002000-00008. [DOI] [PubMed] [Google Scholar]
- Mason W. H., Ross L. A., Lanson J., Wright H. T., Jr Epidemic measles in the postvaccine era: evaluation of epidemiology, clinical presentation and complications during an urban outbreak. Pediatr Infect Dis J. 1993 Jan;12(1):42–48. [PubMed] [Google Scholar]
- Mathias R. G., Meekison W. G., Arcand T. A., Schechter M. T. The role of secondary vaccine failures in measles outbreaks. Am J Public Health. 1989 Apr;79(4):475–478. doi: 10.2105/ajph.79.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller M. A., Redd S., Hadler S., Hinman A. A model to estimate the potential economic benefits of measles eradication for the United States. Vaccine. 1998 Dec;16(20):1917–1922. doi: 10.1016/s0264-410x(98)00125-x. [DOI] [PubMed] [Google Scholar]
- Moss W. J., Cutts F., Griffin D. E. Implications of the human immunodeficiency virus epidemic for control and eradication of measles. Clin Infect Dis. 1999 Jul;29(1):106–112. doi: 10.1086/520136. [DOI] [PubMed] [Google Scholar]
- Nokes D. J., Swinton J. Vaccination in pulses: a strategy for global eradication of measles and polio? Trends Microbiol. 1997 Jan;5(1):14–19. doi: 10.1016/S0966-842X(97)81769-6. [DOI] [PubMed] [Google Scholar]
- Nokes D. J., Williams J. R., Butler A. R. Towards eradication of measles virus: global progress and strategy evaluation. Vet Microbiol. 1995 May;44(2-4):333–350. doi: 10.1016/0378-1135(95)00027-8. [DOI] [PubMed] [Google Scholar]
- Peltola H., Heinonen O. P., Valle M., Paunio M., Virtanen M., Karanko V., Cantell K. The elimination of indigenous measles, mumps, and rubella from Finland by a 12-year, two-dose vaccination program. N Engl J Med. 1994 Nov 24;331(21):1397–1402. doi: 10.1056/NEJM199411243312101. [DOI] [PubMed] [Google Scholar]
- Ratnam S., Tipples G., Head C., Fauvel M., Fearon M., Ward B. J. Performance of indirect immunoglobulin M (IgM) serology tests and IgM capture assays for laboratory diagnosis of measles. J Clin Microbiol. 2000 Jan;38(1):99–104. doi: 10.1128/jcm.38.1.99-104.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rota J. S., Heath J. L., Rota P. A., King G. E., Celma M. L., Carabaña J., Fernandez-Muñoz R., Brown D., Jin L., Bellini W. J. Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. J Infect Dis. 1996 Jan;173(1):32–37. doi: 10.1093/infdis/173.1.32. [DOI] [PubMed] [Google Scholar]
- Sever J. L. Persistent measles infection of the central nervous system: subacute sclerosing panencephalitis. Rev Infect Dis. 1983 May-Jun;5(3):467–473. doi: 10.1093/clinids/5.3.467. [DOI] [PubMed] [Google Scholar]
- Simonsen L., Kane A., Lloyd J., Zaffran M., Kane M. Unsafe injections in the developing world and transmission of bloodborne pathogens: a review. Bull World Health Organ. 1999;77(10):789–800. [PMC free article] [PubMed] [Google Scholar]
- Vitek C. R., Redd S. C., Redd S. B., Hadler S. C. Trends in importation of measles to the United States, 1986-1994. JAMA. 1997 Jun 25;277(24):1952–1956. [PubMed] [Google Scholar]
- Watson J. C., Pearson J. A., Markowitz L. E., Baughman A. L., Erdman D. D., Bellini W. J., Baron R. C., Fleming D. W. An evaluation of measles revaccination among school-entry-aged children. Pediatrics. 1996 May;97(5):613–618. [PubMed] [Google Scholar]
- Whittle H. C., Aaby P., Samb B., Jensen H., Bennett J., Simondon F. Effect of subclinical infection on maintaining immunity against measles in vaccinated children in West Africa. Lancet. 1999 Jan 9;353(9147):98–102. doi: 10.1016/S0140-6736(98)02364-2. [DOI] [PubMed] [Google Scholar]
- de Quadros C. A., Olivé J. M., Hersh B. S., Strassburg M. A., Henderson D. A., Brandling-Bennett D., Alleyne G. A. Measles elimination in the Americas. Evolving strategies. JAMA. 1996 Jan 17;275(3):224–229. doi: 10.1001/jama.275.3.224. [DOI] [PubMed] [Google Scholar]