Skip to main content
Genetics logoLink to Genetics
. 2001 Dec;159(4):1491–1499. doi: 10.1093/genetics/159.4.1491

Phosphate transport and sensing in Saccharomyces cerevisiae.

D D Wykoff 1, E K O'Shea 1
PMCID: PMC1450841  PMID: 11779791

Abstract

Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Delta strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in signaling phosphate starvation. Previous experiments demonstrated a defect in phosphate uptake in phosphate-starved pho84Delta cells; however, the pho84Delta strain expresses PHO5 constitutively when grown in phosphate-replete media. We determined that pho84Delta cells have a significant defect in phosphate uptake even when grown in high phosphate media. Overexpression of unrelated phosphate transporters or a glycerophosphoinositol transporter in the pho84Delta strain suppresses the PHO5 constitutive phenotype. These data suggest that PHO84 is not required for sensing phosphate. We further characterized putative phosphate transporters, identifying two new phosphate transporters, PHO90 and PHO91. A synthetic lethal phenotype was observed when five phosphate transporters were inactivated, and the contribution of each transporter to uptake in high phosphate conditions was determined. Finally, a PHO84-dependent compensation response was identified; the abundance of Pho84p at the plasma membrane increases in cells that are defective in other phosphate transporters.

Full Text

The Full Text of this article is available as a PDF (188.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berhe A., Fristedt U., Persson B. L. Expression and purification of the high-affinity phosphate transporter of Saccharomyces cerevisiae. Eur J Biochem. 1995 Jan 15;227(1-2):566–572. doi: 10.1111/j.1432-1033.1995.tb20426.x. [DOI] [PubMed] [Google Scholar]
  2. Bun-Ya M., Nishimura M., Harashima S., Oshima Y. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol. 1991 Jun;11(6):3229–3238. doi: 10.1128/mcb.11.6.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bun-ya M., Shikata K., Nakade S., Yompakdee C., Harashima S., Oshima Y. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet. 1996 Mar;29(4):344–351. [PubMed] [Google Scholar]
  4. Carroll A. S., Bishop A. C., DeRisi J. L., Shokat K. M., O'Shea E. K. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12578–12583. doi: 10.1073/pnas.211195798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992 Jan 2;110(1):119–122. doi: 10.1016/0378-1119(92)90454-w. [DOI] [PubMed] [Google Scholar]
  6. Coons D. M., Vagnoli P., Bisson L. F. The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast. 1997 Jan;13(1):9–20. doi: 10.1002/(SICI)1097-0061(199701)13:1<9::AID-YEA51>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  7. Costanzo M. C., Crawford M. E., Hirschman J. E., Kranz J. E., Olsen P., Robertson L. S., Skrzypek M. S., Braun B. R., Hopkins K. L., Kondu P. YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res. 2001 Jan 1;29(1):75–79. doi: 10.1093/nar/29.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cox G. B., Webb D., Godovac-Zimmermann J., Rosenberg H. Arg-220 of the PstA protein is required for phosphate transport through the phosphate-specific transport system in Escherichia coli but not for alkaline phosphatase repression. J Bacteriol. 1988 May;170(5):2283–2286. doi: 10.1128/jb.170.5.2283-2286.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haswell E. S., O'Shea E. K. An in vitro system recapitulates chromatin remodeling at the PHO5 promoter. Mol Cell Biol. 1999 Apr;19(4):2817–2827. doi: 10.1128/mcb.19.4.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang S., Jeffery D. A., Anthony M. D., O'Shea E. K. Functional analysis of the cyclin-dependent kinase inhibitor Pho81 identifies a novel inhibitory domain. Mol Cell Biol. 2001 Oct;21(19):6695–6705. doi: 10.1128/MCB.21.19.6695-6705.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaffman A., Herskowitz I., Tjian R., O'Shea E. K. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science. 1994 Feb 25;263(5150):1153–1156. doi: 10.1126/science.8108735. [DOI] [PubMed] [Google Scholar]
  12. Kitada K., Yamaguchi E., Arisawa M. Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation. Gene. 1995 Nov 20;165(2):203–206. doi: 10.1016/0378-1119(95)00552-h. [DOI] [PubMed] [Google Scholar]
  13. Kruckeberg A. L., Walsh M. C., Van Dam K. How do yeast cells sense glucose? Bioessays. 1998 Dec;20(12):972–976. doi: 10.1002/(SICI)1521-1878(199812)20:12<972::AID-BIES2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  14. Lau W. T., Howson R. W., Malkus P., Schekman R., O'Shea E. K. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1107–1112. doi: 10.1073/pnas.97.3.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lau W. W., Schneider K. R., O'Shea E. K. A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae. Genetics. 1998 Dec;150(4):1349–1359. doi: 10.1093/genetics/150.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lemire J. M., Willcocks T., Halvorson H. O., Bostian K. A. Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Aug;5(8):2131–2141. doi: 10.1128/mcb.5.8.2131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lenburg M. E., O'Shea E. K. Signaling phosphate starvation. Trends Biochem Sci. 1996 Oct;21(10):383–387. [PubMed] [Google Scholar]
  18. Liang H., Gaber R. F. A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell. 1996 Dec;7(12):1953–1966. doi: 10.1091/mbc.7.12.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu H., Krizek J., Bretscher A. Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics. 1992 Nov;132(3):665–673. doi: 10.1093/genetics/132.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Longtine M. S., McKenzie A., 3rd, Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., Pringle J. R. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998 Jul;14(10):953–961. doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  21. Martinez P., Persson B. L. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet. 1998 Jun;258(6):628–638. doi: 10.1007/s004380050776. [DOI] [PubMed] [Google Scholar]
  22. Muchhal U. S., Pardo J. M., Raghothama K. G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10519–10523. doi: 10.1073/pnas.93.19.10519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ogawa N., Noguchi K., Sawai H., Yamashita Y., Yompakdee C., Oshima Y. Functional domains of Pho81p, an inhibitor of Pho85p protein kinase, in the transduction pathway of Pi signals in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Feb;15(2):997–1004. doi: 10.1128/mcb.15.2.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ozcan S., Dover J., Johnston M. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 1998 May 1;17(9):2566–2573. doi: 10.1093/emboj/17.9.2566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ozcan S., Dover J., Rosenwald A. G., Wölfl S., Johnston M. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428–12432. doi: 10.1073/pnas.93.22.12428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pattison-Granberg J., Persson B. L. Regulation of cation-coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae. J Bacteriol. 2000 Sep;182(17):5017–5019. doi: 10.1128/jb.182.17.5017-5019.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Patton-Vogt J. L., Henry S. A. GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae. Genetics. 1998 Aug;149(4):1707–1715. doi: 10.1093/genetics/149.4.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Persson B. L., Petersson J., Fristedt U., Weinander R., Berhe A., Pattison J. Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim Biophys Acta. 1999 Nov 16;1422(3):255–272. doi: 10.1016/s0304-4157(99)00010-6. [DOI] [PubMed] [Google Scholar]
  29. Schneider K. R., Smith R. L., O'Shea E. K. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science. 1994 Oct 7;266(5182):122–126. doi: 10.1126/science.7939631. [DOI] [PubMed] [Google Scholar]
  30. Schwob E., Nasmyth K. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 1993 Jul;7(7A):1160–1175. doi: 10.1101/gad.7.7a.1160. [DOI] [PubMed] [Google Scholar]
  31. Theodoris G., Fong N. M., Coons D. M., Bisson L. F. High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics. 1994 Aug;137(4):957–966. doi: 10.1093/genetics/137.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wanner B. L. Gene regulation by phosphate in enteric bacteria. J Cell Biochem. 1993 Jan;51(1):47–54. doi: 10.1002/jcb.240510110. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES