Abstract
Purine nucleoside phosphorylase (NP; EC 2.4.2.1) deficiency is associated with selective T-cell dysfunction and normal B-cell immunity. In order to create an in vivo model of this immune deficiency, we administered 8-aminoguanosine to rats. This water-soluble nucleoside was rapidly converted by NP to the more potent inhibitor 8-aminoguanine, which has a Ki of 0.19 microM. The accumulation of inosine in plasma showed that administration of 8-aminoguanosine was effectively inhibiting NP activity. The administration of 8-aminoguanosine with deoxyguanosine produced increased levels of dGTP only in thymus cells, and increased levels of GTP in cells from thymus, spleen and lymph node and in red cells. This correlated with assays of deoxyguanosine kinase, which showed significantly higher activity in thymus cells than in cells from spleen and lymph node. The intraperitoneal injection of 8-aminoguanosine alone or with deoxyguanosine for 8 consecutive days caused significant decreases in the number of thymus cells (P less than 0.001) and in lymph node and spleen lymphocytes (P less than 0.01). These data showed that the administration of 8-aminoguanosine to rats provided an animal model of NP deficiency that will allow studies of the specific regulation of T-cell function.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barton R. W. The binding of Maclura pomifera lectin to cells of the T-lymphocyte lineage in the rat. Cell Immunol. 1982 Feb;67(1):101–111. doi: 10.1016/0008-8749(82)90202-7. [DOI] [PubMed] [Google Scholar]
- Chan T. S., Lakhchaura B. D., Hsu T. F. Differences in deoxycytidine metabolism in mouse and rat. Biochem J. 1983 Feb 15;210(2):367–371. doi: 10.1042/bj2100367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen A., Gudas L. J., Ammann A. J., Staal G. E., Martin D. W., Jr Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. J Clin Invest. 1978 May;61(5):1405–1409. doi: 10.1172/JCI109058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean B. M., Perrett D., Sensi M. Changes in nucleotide concentrations in the erythrocytes of man, rabbit and rat during short-term storage. Biochem Biophys Res Commun. 1978 Jan 13;80(1):147–154. doi: 10.1016/0006-291x(78)91116-6. [DOI] [PubMed] [Google Scholar]
- Dosch H. M., Mansour A., Cohen A., Shore A., Gelfand E. W. Inhibition of suppressor T-cell development following deoxyguanosine administration. Nature. 1980 Jun 12;285(5765):494–496. doi: 10.1038/285494a0. [DOI] [PubMed] [Google Scholar]
- Durham J. P., Ives D. H. Deoxycytidine kinase. II. Purification and general properties of the calf thymus enzyme. J Biol Chem. 1970 May 10;245(9):2276–2284. [PubMed] [Google Scholar]
- Garrett C., Santi D. V. A rapid and sensitive high pressure liquid chromatography assay for deoxyribonucleoside triphosphates in cell extracts. Anal Biochem. 1979 Nov 1;99(2):268–273. doi: 10.1016/s0003-2697(79)80005-6. [DOI] [PubMed] [Google Scholar]
- Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
- HOLMES R. E., ROBINS R. K. PURINE NUCLEOSIDES. IX. THE SYNTHESIS OF 9-BETA-D-RIBOFURANOSYL URIC ACID AND OTHER RELATED 8-SUBSTITUTED PURINE RIBONUCLEOSIDES. J Am Chem Soc. 1965 Apr 20;87:1772–1776. doi: 10.1021/ja01086a028. [DOI] [PubMed] [Google Scholar]
- Kazmers I. S., Mitchell B. S., Dadonna P. E., Wotring L. L., Townsend L. B., Kelley W. N. Inhibition of purine nucleoside phosphorylase by 8-aminoguanosine: selective toxicity for T lymphoblasts. Science. 1981 Dec 4;214(4525):1137–1139. doi: 10.1126/science.6795718. [DOI] [PubMed] [Google Scholar]
- Krenitsky T. A., Tuttle J. V., Koszalka G. W., Chen I. S., Beacham L. M., 3rd, Rideout J. L., Elion G. B. Deoxycytidine kinase from calf thymus. Substrate and inhibitor specificity. J Biol Chem. 1976 Jul 10;251(13):4055–4061. [PubMed] [Google Scholar]
- Osborne W. R., Chen S. H., Giblett E. R., Biggar W. D., Ammann A. A., Scott C. R. Purine nucleoside phosphorylase deficiency. Evidence for molecular heterogeneity in two families with enzyme-deficient members. J Clin Invest. 1977 Sep;60(3):741–746. doi: 10.1172/JCI108826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborne W. R., Chen S. H., Scott C. R. Use of the integrated steady state rate equation to investigate product inhibition of human red cell adenosine deaminase and its relevance to immune dysfunction. J Biol Chem. 1978 Jan 25;253(2):323–325. [PubMed] [Google Scholar]
- Osborne W. R., Hammond W. P., Dale D. C. Canine cyclic hematopoiesis is associated with abnormal purine and pyrimidine metabolism. J Clin Invest. 1983 May;71(5):1348–1355. doi: 10.1172/JCI110887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborne W. R. Human red cell purine nucleoside phosphorylase. Purification by biospecific affinity chromatography and physical properties. J Biol Chem. 1980 Aug 10;255(15):7089–7092. [PubMed] [Google Scholar]
- Osborne W. R., Scott C. R. The metabolism of deoxyguanosine and guanosine in human B and T lymphoblasts. A role for deoxyguanosine kinase activity in the selective T-cell defect associated with purine nucleoside phosphorylase deficiency. Biochem J. 1983 Sep 15;214(3):711–718. doi: 10.1042/bj2140711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoeckler J. D., Cambor C., Kuhns V., Chu S. H., Parks R. E., Jr Inhibitors of purine nucleoside phosphorylase, C(8) and C(5') substitutions. Biochem Pharmacol. 1982 Jan 15;31(2):163–171. doi: 10.1016/0006-2952(82)90206-4. [DOI] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]