Skip to main content
Immunology logoLink to Immunology
. 1987 Apr;60(4):565–571.

Effect of a Trichinella spiralis infection on the distribution of mast cell precursors in tissues of thymus-bearing and non-thymus-bearing (nude) mice determined by an in vitro assay.

H K Parmentier, J S Teppema, H van Loveren, J Tas, E J Ruitenberg
PMCID: PMC1453279  PMID: 3583312

Abstract

The frequency of precursor cells capable of giving rise to cells with characteristics of mucosal mast cells in tissues from thymus-bearing and non-thymus-bearing (nude) mice orally infected with Trichinella spiralis was determined with an in vitro assay. Analysis of the frequency of mast cell precursors in bone marrow, blood, spleen and small intestinal tissue revealed similar frequencies of mast cell precursors in bone marrow from both thymus-bearing and athymic mice. These frequencies in bone marrow were not affected by infection. However, in blood and spleen from thymus-bearing mice at Day 7 post-infection (p.i.), and in the gut at Day 14 p.i., significant increases of mast cell precursor frequencies were detected. In contrast, no significant increase was observed in the tissues of infected nude mice. These data are in accordance with in vivo findings, indicating that a mucosal mast cell response in the gut is both thymus and antigen dependent. It was concluded that a mucosal mast cell response to infection with T. spiralis is probably due to local proliferation and maturation of residing mast cell precursors, that this response might be amplified by an influx of precursor cells from the blood into the gut, and that both phenomena are T-cell dependent.

Full text

PDF
565

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbud Filho M., Dy M., Lebel B., Luffau G., Hamburger J. In vitro and in vivo histamine-producing cell-stimulating factor (or IL3) production during Nippostrongylus brasiliensis infection: coincidence with self-cure phenomenon. Eur J Immunol. 1983 Oct;13(10):841–845. doi: 10.1002/eji.1830131011. [DOI] [PubMed] [Google Scholar]
  2. Ahlstedt S., Olaisson E., Thellin J., Björkstén B. Appearance of mast cells in bone marrow, peripheral blood and spleen of immunized rats. Int Arch Allergy Appl Immunol. 1986;80(2):122–126. doi: 10.1159/000234038. [DOI] [PubMed] [Google Scholar]
  3. Alizadeh H., Murrell K. D. The intestinal mast cell response to Trichinella spiralis infection in mast cell-deficient w/wv mice. J Parasitol. 1984 Oct;70(5):767–773. [PubMed] [Google Scholar]
  4. Crapper R. M., Schrader J. W. Frequency of mast cell precursors in normal tissues determined by an in vitro assay: antigen induces parallel increases in the frequency of P cell precursors and mast cells. J Immunol. 1983 Aug;131(2):923–928. [PubMed] [Google Scholar]
  5. Crowle P. K. Mucosal mast cell reconstitution and Nippostrongylus brasiliensis rejection by W/Wv mice. J Parasitol. 1983 Feb;69(1):66–69. [PubMed] [Google Scholar]
  6. Davidson S., Mansour A., Gallily R., Smolarski M., Rofolovitch M., Ginsburg H. Mast cell differentiation depends on T cells and granule synthesis on fibroblasts. Immunology. 1983 Mar;48(3):439–452. [PMC free article] [PubMed] [Google Scholar]
  7. Denburg J. A., Befus A. D., Bienenstock J. Growth and differentiation in vitro of mast cells from mesenteric lymph nodes of Nippostrongylus brasiliensis-infected rats. Immunology. 1980 Sep;41(1):195–202. [PMC free article] [PubMed] [Google Scholar]
  8. Dillon S. B., MacDonald T. T. Limit dilution analysis of mast cell precursor frequency in the gut epithelium of normal and Trichinella spiralis infected mice. Parasite Immunol. 1986 Sep;8(5):503–511. doi: 10.1111/j.1365-3024.1986.tb00865.x. [DOI] [PubMed] [Google Scholar]
  9. Ginsburg H., Nir I., Hammel I., Eren R., Weissman B. A., Naot Y. Differentiation and activity of mast cells following immunization in cultures of lymph-node cells. Immunology. 1978 Sep;35(3):485–502. [PMC free article] [PubMed] [Google Scholar]
  10. Ginsburg H., Olson E. C., Huff T. F., Okudaira H., Ishizaka T. Enhancement of mast cell differentiation in vitro by T cell factor(s). Int Arch Allergy Appl Immunol. 1981;66(4):447–458. doi: 10.1159/000232853. [DOI] [PubMed] [Google Scholar]
  11. Guy-Grand D., Dy M., Luffau G., Vassalli P. Gut mucosal mast cells. Origin, traffic, and differentiation. J Exp Med. 1984 Jul 1;160(1):12–28. doi: 10.1084/jem.160.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haig D. M., Jarrett E. E., Tas J. In vitro studies on mast cell proliferation in N. brasiliensis infection. Immunology. 1984 Apr;51(4):643–651. [PMC free article] [PubMed] [Google Scholar]
  13. Haig D. M., McKee T. A., Jarrett E. E., Woodbury R., Miller H. R. Generation of mucosal mast cells is stimulated in vitro by factors derived from T cells of helminth-infected rats. Nature. 1982 Nov 11;300(5888):188–190. doi: 10.1038/300188a0. [DOI] [PubMed] [Google Scholar]
  14. Ihle J. N., Keller J., Oroszlan S., Henderson L. E., Copeland T. D., Fitch F., Prystowsky M. B., Goldwasser E., Schrader J. W., Palaszynski E. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol. 1983 Jul;131(1):282–287. [PubMed] [Google Scholar]
  15. Kitamura Y., Shimada M., Go S., Matsuda H., Hatanaka K., Seki M. Distribution of mast-cell precursors in hematopoeitic and lymphopoietic tissues of mice. J Exp Med. 1979 Sep 19;150(3):482–490. doi: 10.1084/jem.150.3.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kohler G., Ruitenberg E. J. Comparison of three methods for the detection of Trichinella spiralis infections in pigs by five European laboratories. Bull World Health Organ. 1974;50(5):413–419. [PMC free article] [PubMed] [Google Scholar]
  17. Mayrhofer G. The nature of the thymus dependency of mucosal mast cells. II. The effect of thymectomy and of depleting recirculating lymphocytes on the response to Nippostrongylus brasilliensis. Cell Immunol. 1979 Oct;47(2):312–322. doi: 10.1016/0008-8749(79)90341-1. [DOI] [PubMed] [Google Scholar]
  18. Nabarra B., Dy M. Ultrastructural study on long-term cultures of bone marrow cells with histamine-producing stimulating factor (HCSF). Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;46(3):175–185. doi: 10.1007/BF02890307. [DOI] [PubMed] [Google Scholar]
  19. Nawa Y., Miller H. R. Adoptive transfer of the intestinal mast cell response in rats infected with Nippostrongylus brasiliensis. Cell Immunol. 1979 Feb;42(2):225–239. doi: 10.1016/0008-8749(79)90188-6. [DOI] [PubMed] [Google Scholar]
  20. Parmentier H. K., Ruitenberg E. J., Elgersma A. Thymus dependence of the adoptive transfer of intestinal mastocytopoiesis in Trichinella spiralis-infected mice. Int Arch Allergy Appl Immunol. 1982;68(3):260–267. doi: 10.1159/000233109. [DOI] [PubMed] [Google Scholar]
  21. Razin E., Cordon-Cardo C., Good R. A. Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2559–2561. doi: 10.1073/pnas.78.4.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Razin E., Stevens R. L., Akiyama F., Schmid K., Austen K. F. Culture from mouse bone marrow of a subclass of mast cells possessing a distinct chondroitin sulfate proteoglycan with glycosaminoglycans rich in N-acetylgalactosamine-4,6-disulfate. J Biol Chem. 1982 Jun 25;257(12):7229–7236. [PubMed] [Google Scholar]
  23. Ruitenberg E. J., Elgersma A. Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature. 1976 Nov 18;264(5583):258–260. doi: 10.1038/264258a0. [DOI] [PubMed] [Google Scholar]
  24. Schrader J. W. Bone marrow differentiation in vitro. Crit Rev Immunol. 1983;4(3):197–277. [PubMed] [Google Scholar]
  25. Schrader J. W., Lewis S. J., Clark-Lewis I., Culvenor J. G. The persisting (P) cell: histamine content, regulation by a T cell-derived factor, origin from a bone marrow precursor, and relationship to mast cells. Proc Natl Acad Sci U S A. 1981 Jan;78(1):323–327. doi: 10.1073/pnas.78.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sredni B., Friedman M. M., Bland C. E., Metcalfe D. D. Ultrastructural, biochemical, and functional characteristics of histamine-containing cells cloned from mouse bone marrow: tentative identification as mucosal mast cells. J Immunol. 1983 Aug;131(2):915–922. [PubMed] [Google Scholar]
  27. Tas J., Berndsen R. G. Does heparin occur in mucosal mast cells of the rat small intestine? J Histochem Cytochem. 1977 Sep;25(9):1058–1062. doi: 10.1177/25.9.71326. [DOI] [PubMed] [Google Scholar]
  28. Tas J., Geenen L. H. Microspectrophotometric detection of heparin in mast cells and basophilic granulocytes stained metachromatically with Toluidine Blue O. Histochem J. 1975 May;7(3):231–248. doi: 10.1007/BF01003592. [DOI] [PubMed] [Google Scholar]
  29. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
  30. Tertian G., Yung Y. P., Guy-Grand D., Moore M. A. Long-term in vitro culture of murine mast cells. I. Description of a growth factor-dependent culture technique. J Immunol. 1981 Aug;127(2):788–794. [PubMed] [Google Scholar]
  31. Van Loveren H., Askenase P. W. Delayed-type hypersensitivity is mediated by a sequence of two different T cell activities. J Immunol. 1984 Nov;133(5):2397–2401. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES