Abstract
Eosinophils from the blood of normal individuals were purified by centrifugation over discontinuous Percoll gradients. Eosinophil suspensions were obtained with a mean purity of 96% and a mean recovery of 64% (n = 19). When incubated with phorbol-myristate acetate, eosinophils consumed twice as much oxygen as did neutrophils from the same donors. With serum-treated zymosan, 70% and 100% of the maximal oxidative response (i.e. the response to phorbol-myristate acetate) was obtained with eosinophils and neutrophils, respectively. The calcium ionophore A23187 is a weak stimulus that triggered only 2.5% of the eosinophil and 10% of the neutrophil oxidative capacity. The response of both cell types to formyl-methionyl-leucyl-phenylalanine (fMLP) was rapid, with a maximum after 3 min. The magnitude of this eosinophil reaction was half that of neutrophils. Although the activities of the granule enzymes beta-glucuronidase and arylsulphatase were 2.5 and 6 times higher in eosinophils than in neutrophils, respectively, the exocytosis of these enzymes in response to various stimuli was lower in eosinophils. The high yield of eosinophils from our separation method enabled us to prepare eosinoplasts by centrifugation of eosinophils over discontinuous Ficoll gradients that contained cytochalasin B. Eosinoplasts are plasma membrane vesicles derived from eosinophils, filled with cytoplasm but devoid of granules and nucleus. The eosinoplasts contained 30% of the cytoplasm and plasma membrane present in intact eosinophils. Eosinoplasts still possessed a functionally intact oxidase enzyme that could be stimulated with various stimuli. Therefore, eosinoplasts may provide a valuable tool to study separately the role of the oxidase products and that of the granule contents in eosinophil functions.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackerman S. J., Gleich G. J., Loegering D. A., Richardson B. A., Butterworth A. E. Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am J Trop Med Hyg. 1985 Jul;34(4):735–745. doi: 10.4269/ajtmh.1985.34.735. [DOI] [PubMed] [Google Scholar]
- Baehner R. L., Johnston R. B., Jr Metabolic and bactericidal activities of human eosinophils. Br J Haematol. 1971 Mar;20(3):277–285. doi: 10.1111/j.1365-2141.1971.tb07038.x. [DOI] [PubMed] [Google Scholar]
- Bass D. A., Grover W. H., Lewis J. C., Szejda P., DeChatelet L. R., McCall C. E. Comparison of human eosinophils from normals and patients with eosinophilia. J Clin Invest. 1980 Dec;66(6):1265–1273. doi: 10.1172/JCI109978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butterworth A. E., Sturrock R. F., Houba V., Mahmoud A. A., Sher A., Rees P. H. Eosinophils as mediators of antibody-dependent damage to schistosomula. Nature. 1975 Aug 28;256(5520):727–729. doi: 10.1038/256727a0. [DOI] [PubMed] [Google Scholar]
- Butterworth A. E., Wassom D. L., Gleich G. J., Loegering D. A., David J. R. Damage to schistosomula of Schistosoma mansoni induced directly by eosinophil major basic protein. J Immunol. 1979 Jan;122(1):221–229. [PubMed] [Google Scholar]
- Dahlgren C., Stendahl O. Role of myeloperoxidase in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun. 1983 Feb;39(2):736–741. doi: 10.1128/iai.39.2.736-741.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day R. P. Eosinophil cell separation from human peripheral blood. Immunology. 1970 Jun;18(6):955–959. [PMC free article] [PubMed] [Google Scholar]
- DeChatelet L. R., Shirley P. S., McPhail L. C., Huntley C. C., Muss H. B., Bass D. A. Oxidative metabolism of the human eosinophil. Blood. 1977 Sep;50(3):525–535. [PubMed] [Google Scholar]
- Fukuda T., Ackerman S. J., Reed C. E., Peters M. S., Dunnette S. L., Gleich G. J. Calcium ionophore A23187 calcium-dependent cytolytic degranulation in human eosinophils. J Immunol. 1985 Aug;135(2):1349–1356. [PubMed] [Google Scholar]
- Goldstein I. M., Roos D., Kaplan H. B., Weissmann G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest. 1975 Nov;56(5):1155–1163. doi: 10.1172/JCI108191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gärtner I. Separation of human eosinophils in density gradients of polyvinylpyrrolidone-coated silica gel (Percoll). Immunology. 1980 May;40(1):133–136. [PMC free article] [PubMed] [Google Scholar]
- Hagan P., Moore P. J., Adjukiewicz A. B., Greenwood B. M., Wilkins H. A. In-vitro antibody-dependent killing of schistosomula of Schistosoma haematobium by human eosinophils. Parasite Immunol. 1985 Nov;7(6):617–624. doi: 10.1111/j.1365-3024.1985.tb00105.x. [DOI] [PubMed] [Google Scholar]
- Jong E. C., Klebanoff S. J. Eosinophil-mediated mammalian tumor cell cytotoxicity: role of the peroxidase system. J Immunol. 1980 Apr;124(4):1949–1953. [PubMed] [Google Scholar]
- Jong E. C., Mahmoud A. A., Klebanoff S. J. Peroxidase-mediated toxicity to schistosomula of Schistosoma mansoni. J Immunol. 1981 Feb;126(2):468–471. [PubMed] [Google Scholar]
- Kazura J. W., Grove D. I. Stage-specific antibody-dependent eosinophil-mediated destruction of Trichinella spiralis. Nature. 1978 Aug 10;274(5671):588–589. doi: 10.1038/274588a0. [DOI] [PubMed] [Google Scholar]
- Kierszenbaum F., Ackerman S. J., Gleich G. J. Destruction of bloodstream forms of Trypanosoma cruzi by eosinophil granule major basic protein. Am J Trop Med Hyg. 1981 Jul;30(4):775–779. doi: 10.4269/ajtmh.1981.30.775. [DOI] [PubMed] [Google Scholar]
- Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
- Lutter R., van Schaik M. L., van Zwieten R., Wever R., Roos D., Hamers M. N. Purification and partial characterization of the b-type cytochrome from human polymorphonuclear leukocytes. J Biol Chem. 1985 Feb 25;260(4):2237–2244. [PubMed] [Google Scholar]
- Metcalfe D. D., Gadek J. E., Raphael G. D., Frank M. M., Kaplan A. P., Kaliner M. Human eosinophil adherence to serum-treated sepharose: granule-associated enzyme release and requirement for activation of the alternative complement pathway. J Immunol. 1977 Nov;119(5):1744–1750. [PubMed] [Google Scholar]
- Pincus S. H. Hydrogen peroxide release from eosinophils: quantitative, comparative studies of human and guinea pig eosinophils. J Invest Dermatol. 1983 Apr;80(4):278–281. doi: 10.1111/1523-1747.ep12534646. [DOI] [PubMed] [Google Scholar]
- Pincus S. H., Schooley W. R., DiNapoli A. M., Broder S. Metabolic heterogeneity of eosinophils from normal and hypereosinophilic patients. Blood. 1981 Dec;58(6):1175–1181. [PubMed] [Google Scholar]
- Prin L., Capron M., Tonnel A. B., Bletry O., Capron A. Heterogeneity of human peripheral blood eosinophils: variability in cell density and cytotoxic ability in relation to the level and the origin of hypereosinophilia. Int Arch Allergy Appl Immunol. 1983;72(4):336–346. doi: 10.1159/000234893. [DOI] [PubMed] [Google Scholar]
- Roberts R. L., Gallin J. I. Rapid method for isolation of normal human peripheral blood eosinophils on discontinuous Percoll gradients and comparison with neutrophils. Blood. 1985 Feb;65(2):433–440. [PubMed] [Google Scholar]
- Roos D., Homan-Müller J. W., Weening R. S. Effect of cytochalasin B on the oxidative metabolism of human peripheral blood granulocytes. Biochem Biophys Res Commun. 1976 Jan 12;68(1):43–50. doi: 10.1016/0006-291x(76)90007-3. [DOI] [PubMed] [Google Scholar]
- Roos D., Loos J. A. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. I. Stimulation by phytohaemagglutinin. Biochim Biophys Acta. 1970 Dec 29;222(3):565–582. doi: 10.1016/0304-4165(70)90182-0. [DOI] [PubMed] [Google Scholar]
- Roos D., Voetman A. A., Meerhof L. J. Functional activity of enucleated human polymorphonuclear leukocytes. J Cell Biol. 1983 Aug;97(2):368–377. doi: 10.1083/jcb.97.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos D., Weening R. S., Voetman A. A., van Schaik M. L., Bot A. A., Meerhof L. J., Loos J. A. Protection of phagocytic leukocytes by endogenous glutathione: studies in a family with glutathione reductase deficiency. Blood. 1979 May;53(5):851–866. [PubMed] [Google Scholar]
- Segal A. W., Cross A. R., Garcia R. C., Borregaard N., Valerius N. H., Soothill J. F., Jones O. T. Absence of cytochrome b-245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med. 1983 Feb 3;308(5):245–251. doi: 10.1056/NEJM198302033080503. [DOI] [PubMed] [Google Scholar]
- Shult P. A., Graziano F. M., Wallow I. H., Busse W. W. Comparison of superoxide generation and luminol-dependent chemiluminescence with eosinophils and neutrophils from normal individuals. J Lab Clin Med. 1985 Dec;106(6):638–645. [PubMed] [Google Scholar]
- Tai P. C., Spry C. J. Studies on blood eosinophils. I. Patients with a transient eosinophilia. Clin Exp Immunol. 1976 Jun;24(3):415–422. [PMC free article] [PubMed] [Google Scholar]
- Tauber A. I., Goetzl E. J., Babior B. M. Unique characteristics of superoxide production by human eosinophils in eosinophilic states. Inflammation. 1979 Jul;3(3):261–272. doi: 10.1007/BF00914183. [DOI] [PubMed] [Google Scholar]
- Vadas M. A., David J. R., Butterworth A., Pisani N. T., Siongok T. A. A new method for the purification of human eosinophils and neutrophils, and a comparison of the ability of these cells to damage schistosomula of Schistosoma mansoni. J Immunol. 1979 Apr;122(4):1228–1236. [PubMed] [Google Scholar]
- Villalta F., Kierszenbaum F. Role of inflammatory cells in Chagas' disease. I. Uptake and mechanism of destruction of intracellular (amastigote) forms of Trypanosoma cruzi by human eosinophils. J Immunol. 1984 Apr;132(4):2053–2058. [PubMed] [Google Scholar]
- Voetman A. A., Weening R. S., Hamers M. N., Meerhof L. J., Bot A. A., Roos D. Phagocytosing human neutrophils inactivate their own granular enzymes. J Clin Invest. 1981 May;67(5):1541–1549. doi: 10.1172/JCI110185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weening R. S., Roos D., Loos J. A. Oxygen consumption of phagocytizing cells in human leukocyte and granulocyte preparations: a comparative study. J Lab Clin Med. 1974 Apr;83(4):570–577. [PubMed] [Google Scholar]
- West B. C., Gelb N. A., Rosenthal A. S. Isolation and partial characterization of human eosinophil granules. Comparison to neutrophils. Am J Pathol. 1975 Dec;81(3):575–588. [PMC free article] [PubMed] [Google Scholar]
- Yazdanbakhsh M., Eckmann C. M., Bot A. A., Roos D. Bactericidal action of eosinophils from normal human blood. Infect Immun. 1986 Jul;53(1):192–198. doi: 10.1128/iai.53.1.192-198.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yazdanbakhsh M., Eckmann C. M., Roos D. Characterization of the interaction of human eosinophils and neutrophils with opsonized particles. J Immunol. 1985 Aug;135(2):1378–1384. [PubMed] [Google Scholar]
- Zeiger R. S., Colten H. R. Histaminase release from human eosinophils. J Immunol. 1977 Feb;118(2):540–543. [PubMed] [Google Scholar]
