Skip to main content
Immunology logoLink to Immunology
. 1987 Jun;61(2):203–206.

Protein and diacylglycerol phosphorylation in the stimulus-secretion coupling of rat mast cells.

R Sagi-Eisenberg, J C Foreman, P J Raval, S Cockcroft
PMCID: PMC1453368  PMID: 2439445

Abstract

The pattern of endogenous protein phosphorylation during stimulation of rat peritoneal mast cells by two types of agonists has been compared. Compound 48/80, substance P and histone, which do not require the presence of external Ca2+ to trigger histamine release, induced a similar profile of phosphorylation comprising an increased phosphorylation of a 35,000 molecular weight (MW) protein and dephosphorylation of a 15,000 MW protein. The same profile was seen when the cells were stimulated with phorbol-12-myristate-13-acetate. The phorbol ester also induced histamine release, although less than that caused by the other secretagogues. The pattern of phosphorylation shared by both the phorbol ester and the basic secretagogues represented only part of that observed when the cells were stimulated in a Ca2+-free medium with anti-IgE. Under those conditions, two additional proteins of 68,000 and 56,000 MW became phosphorylated. The phosphorylation of these two proteins increased when anti-IgE was applied in the presence of Ca2+. In contrast, the extent of phosphorylation of the 35,000 MW protein was diminished. Both the basic secretagogues and anti-IgE, but not the phorbol ester, also enhanced the production of phosphatidic acid, indicating that diacylglycerol was generated. This process was independent of the presence of external Ca2+. It is suggested that protein kinase C activation is responsible for the phosphorylation observed with the basic secretagogues but not entirely with IgE-directed ligands.

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Cockcroft S. A modified procedure for thin-layer chromatography of phospholipids. J Lipid Res. 1982 Dec;23(9):1373–1374. [PubMed] [Google Scholar]
  2. Barrowman M. M., Cockcroft S., Gomperts B. D. Potentiation and inhibition of secretion from neutrophils by phorbol ester. FEBS Lett. 1986 May 26;201(1):137–142. doi: 10.1016/0014-5793(86)80586-5. [DOI] [PubMed] [Google Scholar]
  3. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  4. Cochet C., Gill G. N., Meisenhelder J., Cooper J. A., Hunter T. C-kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem. 1984 Feb 25;259(4):2553–2558. [PubMed] [Google Scholar]
  5. Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982 Apr 15;296(5858):613–620. doi: 10.1038/296613a0. [DOI] [PubMed] [Google Scholar]
  6. Fewtrell C. M., Foreman J. C., Jordan C. C., Oehme P., Renner H., Stewart J. M. The effects of substance P on histamine and 5-hydroxytryptamine release in the rat. J Physiol. 1982 Sep;330:393–411. doi: 10.1113/jphysiol.1982.sp014347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foreman J. C., Hallett M. B., Mongar J. L. The relationship between histamine secretion and 45calcium uptake by mast cells. J Physiol. 1977 Sep;271(1):193–214. doi: 10.1113/jphysiol.1977.sp011996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foreman J. C., Mongar J. L. The role of the alkaline earth ions in anaphylactic histamine secretion. J Physiol. 1972 Aug;224(3):753–769. doi: 10.1113/jphysiol.1972.sp009921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ishizaka T., Foreman J. C., Sterk A. R., Ishizaka K. Induction of calcium flux across the rat mast cell membrane by bridging IgE receptors. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5858–5862. doi: 10.1073/pnas.76.11.5858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaibuchi K., Sano K., Hoshijima M., Takai Y., Nishizuka Y. Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium. 1982 Oct;3(4-5):323–335. doi: 10.1016/0143-4160(82)90020-3. [DOI] [PubMed] [Google Scholar]
  11. Katakami Y., Kaibuchi K., Sawamura M., Takai Y., Nishizuka Y. Synergistic action of protein kinase C and calcium for histamine release from rat peritoneal mast cells. Biochem Biophys Res Commun. 1984 Jun 15;121(2):573–578. doi: 10.1016/0006-291x(84)90220-1. [DOI] [PubMed] [Google Scholar]
  12. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  13. SHORE P. A., BURKHALTER A., COHN V. H., Jr A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther. 1959 Nov;127:182–186. [PubMed] [Google Scholar]
  14. Sagi-Eisenberg R., Foreman J. C. Fractionation of mast cell components for studies of ligand-receptor binding at the plasma membrane. Immunol Lett. 1984;8(1):43–47. doi: 10.1016/0165-2478(84)90103-2. [DOI] [PubMed] [Google Scholar]
  15. Sagi-Eisenberg R., Foreman J. C., Shelly R. Histamine release induced by histone and phorbol ester from rat peritoneal mast cells. Eur J Pharmacol. 1985 Jul 11;113(1):11–17. doi: 10.1016/0014-2999(85)90337-1. [DOI] [PubMed] [Google Scholar]
  16. Sagi-Eisenberg R., Pecht I. Protein kinase C, a coupling element between stimulus and secretion of basophils. Immunol Lett. 1984;8(5):237–241. doi: 10.1016/0165-2478(84)90002-6. [DOI] [PubMed] [Google Scholar]
  17. Schulman H. Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase. J Cell Biol. 1984 Jul;99(1 Pt 1):11–19. doi: 10.1083/jcb.99.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sharkey N. A., Leach K. L., Blumberg P. M. Competitive inhibition by diacylglycerol of specific phorbol ester binding. Proc Natl Acad Sci U S A. 1984 Jan;81(2):607–610. doi: 10.1073/pnas.81.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES