Abstract
The dye fura-2, a potentially more sensitive successor to quin2 for measuring intracellular free calcium ion concentrations [(Ca2+]i), has been applied here to investigate the possible involvement of early changes in [Ca2+]i in the stimulation of the human monocyte-macrophage-like cell line U937. The calcium ionophores A23187 and ionomycin, known pharmacological stimuli for macrophages, were found to cause sharp rises in [Ca2+]i as expected. Responses analogous to those reported for a murine macrophage cell (J774) were obtained on stimulation of U937 cells with ATP which caused rapid, but transient, increases in [Ca2+]i (from resting levels of about 70 nM to peaks of about 200 mM). In addition to ATP, several agents known to activate macrophages were used as stimuli. In particular, platelet-activating factor (PAF; 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was found to cause rapid, but transient, increases in [Ca2+]i (from resting levels of about 70 nM to peaks of about 400 nM) even at concentrations as low as 10(-10) M. This contrasts with responses to ATP that were markedly reduced at 10(-6) M compared with 10(-5) M or above, suggesting that PAF is a highly potent stimulus for intracellular calcium mobilization in macrophages. Similar responses were obtained with chemotactic peptide (N-formyl-methionyl-leucyl-phenylalanine). On the other hand, two agents known to be potent activators of macrophages, interferon gamma and lipopolysaccharide, had no rapid effect on [Ca2+]i. This may reflect differences in the kinetics of signal-response coupling or alternatively a different mechanism of action by-passing the need for rapid elevation of [Ca2+]i.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
- Bijsterbosch M. K., Rigley K. P., Klaus G. G. Cross-linking of surface immunoglobulin on B lymphocytes induces both intracellular Ca2+ release and Ca2+ influx: analysis with indo-1. Biochem Biophys Res Commun. 1986 May 29;137(1):500–506. doi: 10.1016/0006-291x(86)91238-6. [DOI] [PubMed] [Google Scholar]
- Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
- Conrad G. W., Rink T. J. Platelet activating factor raises intracellular calcium ion concentration in macrophages. J Cell Biol. 1986 Aug;103(2):439–450. doi: 10.1083/jcb.103.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorecka-Tisera A. M., Snowdowne K. W., Borle A. B. Implications of a rise in cytosolic free calcium in the activation of RAW-264 macrophages for tumor cell killing. Cell Immunol. 1986 Jul;100(2):411–421. doi: 10.1016/0008-8749(86)90040-7. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hartung H. P. Acetyl glyceryl ether phosphorylcholine (platelet-activating factor) mediates heightened metabolic activity in macrophages. Studies on PGE, TXB2 and O2- production, spreading, and the influence of calmodulin-inhibitor W-7. FEBS Lett. 1983 Aug 22;160(1-2):209–212. doi: 10.1016/0014-5793(83)80968-5. [DOI] [PubMed] [Google Scholar]
- Heiman D. F., Gardner J. P., Apfeldorf W. J., Malech H. L. Effects of tunicamycin on the expression and function of formyl peptide chemotactic receptors of differentiated HL-60 cells. J Immunol. 1986 Jun 15;136(12):4623–4630. [PubMed] [Google Scholar]
- Johnson H. M., Torres B. A. Mechanism of calcium ionophore A23187-induced priming of bone marrow-derived macrophages for tumor cell killing: relationship to priming by interferon. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5959–5962. doi: 10.1073/pnas.82.17.5959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston R. B., Jr, Kitagawa S. Molecular basis for the enhanced respiratory burst of activated macrophages. Fed Proc. 1985 Nov;44(14):2927–2932. [PubMed] [Google Scholar]
- Kruskal B. A., Shak S., Maxfield F. R. Spreading of human neutrophils is immediately preceded by a large increase in cytoplasmic free calcium. Proc Natl Acad Sci U S A. 1986 May;83(9):2919–2923. doi: 10.1073/pnas.83.9.2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lew P. D., Stossel T. P. Calcium transport by macrophage plasma membranes. J Biol Chem. 1980 Jun 25;255(12):5841–5846. [PubMed] [Google Scholar]
- McIntyre T. M., Zimmerman G. A., Prescott S. M. Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2204–2208. doi: 10.1073/pnas.83.7.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pozzan T., Arslan P., Tsien R. Y., Rink T. J. Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J Cell Biol. 1982 Aug;94(2):335–340. doi: 10.1083/jcb.94.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siggens K. W., Wilkinson M. F., Boseley P. G., Slocombe P. M., Cowling G., Morris A. G. Differences in the expression of the human interferon-gamma gene in fresh lymphocytes and cultured lymphoblasts. Biochem Biophys Res Commun. 1984 Feb 29;119(1):157–162. doi: 10.1016/0006-291x(84)91632-2. [DOI] [PubMed] [Google Scholar]
- Somers S. D., Weiel J. E., Hamilton T. A., Adams D. O. Phorbol esters and calcium ionophore can prime murine peritoneal macrophages for tumor cell destruction. J Immunol. 1986 Jun 1;136(11):4199–4205. [PubMed] [Google Scholar]
- Strassmann G., Somers S. D., Springer T. A., Adams D. O., Hamilton T. A. Biochemical models of interferon-gamma-mediated macrophage activation: independent regulation of lymphocyte function associated antigen (LFA)-1 and I-A antigen on murine peritoneal macrophages. Cell Immunol. 1986 Jan;97(1):110–120. doi: 10.1016/0008-8749(86)90380-1. [DOI] [PubMed] [Google Scholar]
- Sundström C., Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer. 1976 May 15;17(5):565–577. doi: 10.1002/ijc.2910170504. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wightman P. D., Raetz C. R. The activation of protein kinase C by biologically active lipid moieties of lipopolysaccharide. J Biol Chem. 1984 Aug 25;259(16):10048–10052. [PubMed] [Google Scholar]
- Wright B., Zeidman I., Greig R., Poste G. Inhibition of macrophage activation by calcium channel blockers and calmodulin antagonists. Cell Immunol. 1985 Oct 1;95(1):46–53. doi: 10.1016/0008-8749(85)90293-x. [DOI] [PubMed] [Google Scholar]
- Young J. D., Ko S. S., Cohn Z. A. The increase in intracellular free calcium associated with IgG gamma 2b/gamma 1 Fc receptor-ligand interactions: role in phagocytosis. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5430–5434. doi: 10.1073/pnas.81.17.5430. [DOI] [PMC free article] [PubMed] [Google Scholar]
