Abstract
The secondary humoral response evoked in W/Fu rats by the weakly immunogenic soluble Gross cell surface antigen (GCSAa) extracted from the syngeneic (C58NT)D lymphoma can be enhanced when GCSAa is presented in liposomes, and this requires the antigen to be strongly associated with the phospholipid bilayers. In order to investigate further the role of the phospholipid microenvironment in the membrane presentation of this antigen, the relationship between the phospholipid composition and the immunogenic potency of GCSAa liposomes was explored. For a given neutral phospholipid component, optimal immunogenicity was obtained when 20% cholesterol was present and when a negatively charged phospholipid was included as a minor component. When phosphatidylcholines (PC) were used as the major neutral component, the immunogenicity of GCSAa liposomes from optimal for distearoyl PC (DSPC) decreased when decreasing the PC acyl chain length down to the background level for dilauroyl PC (DLPC). Similarly, the use of PC with acyl chain of increasing unsaturation was followed by a decline in the immunogenicity of the GCSAa liposomes up to the background level for dilinoleoyl PC (DLiPC). Replacing PC headgroups by phosphatidylethanolamine (PE) headgroups abolished the enhancing effect of the liposome presentation on GCSAa immunogenicity. Three groups of phospholipids unable to promote the expression of the GCSAa immunogenicity could be distinguished: the DLPC, DLiPC group, unable to prime the animals but, contrary to the soluble antigen, able to boost the animal after an appropriate priming with GCSAa-DSPC-liposomes, the dimyristoyl PE group, unable to prime or to boost and non-toxic in vitro for the macrophages, and the dipalmitoyl PE group, acutely toxic for macrophages.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison A. G., Gregoriadis G. Liposomes as immunological adjuvants. Nature. 1974 Nov 15;252(5480):252–252. doi: 10.1038/252252a0. [DOI] [PubMed] [Google Scholar]
- Bomford R. The adjuvant activity of fatty acid esters. The role of acyl chain length and degree of saturation. Immunology. 1981 Sep;44(1):187–192. [PMC free article] [PubMed] [Google Scholar]
- Dancey G. F., Yasuda T., Kinsky S. C. Effect of liposomal model membrane composition on immunogenicity. J Immunol. 1978 Apr;120(4):1109–1113. [PubMed] [Google Scholar]
- Dijkstra J., van Galen M., Scherphof G. Influence of liposome charge on the association of liposomes with Kupffer cells in vitro. Effects of divalent cations and competition with latex particles. Biochim Biophys Acta. 1985 Mar 14;813(2):287–297. doi: 10.1016/0005-2736(85)90244-5. [DOI] [PubMed] [Google Scholar]
- Duprez V., Mescher M. F., Burakoff S. J. Stimulation of secondary anti-MSV cytolytic T lymphocytes with MBL-2 reconstituted membranes. J Immunol. 1983 Jan;130(1):493–495. [PubMed] [Google Scholar]
- Gall D. The adjuvant activity of aliphatic nitrogenous bases. Immunology. 1966 Oct;11(4):369–386. [PMC free article] [PubMed] [Google Scholar]
- Gerlier D., Bakouche O., Dore J. F. Liposomes as a tool to study the role of membrane presentation in the immunogenicity of a MuLV-related tumor antigen. J Immunol. 1983 Jul;131(1):485–490. [PubMed] [Google Scholar]
- Gerlier D., Price M., Baldwin R. W. Non-immunogenicity of enucleated rat hepatoma cells in syngeneic animals. Br J Cancer. 1981 Nov;44(5):725–732. doi: 10.1038/bjc.1981.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerlier D., Sakai F., Doré J. F. Induction of antibody response to liposome-associated Gross-virus cell-surface antigen (GCSAa). Br J Cancer. 1980 Feb;41(2):236–242. doi: 10.1038/bjc.1980.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregoriadis G., Davis C. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1287–1293. doi: 10.1016/0006-291x(79)92148-x. [DOI] [PubMed] [Google Scholar]
- Heath T. D., Edwards D. C., Ryman B. E. The adjuvant properties of liposomes. Biochem Soc Trans. 1976;4(1):129–133. doi: 10.1042/bst0040129. [DOI] [PubMed] [Google Scholar]
- Herberman R. B., Oren M. E. Immune response to Gross virus-induced lymphoma. I. Kinetics of cytotoxic antibody response. J Natl Cancer Inst. 1971 Feb;46(2):391–396. [PubMed] [Google Scholar]
- Johnson S. M. The inability of macrophages to digest liposomes containing a high proportion of cholesterol. Biochem Soc Trans. 1975;3(1):160–161. doi: 10.1042/bst0030160. [DOI] [PubMed] [Google Scholar]
- Kirby C., Clarke J., Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980 Feb 15;186(2):591–598. doi: 10.1042/bj1860591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ledbetter J., Nowinski R. C. Identification of the Gross cell surface antigen associated with murine leukemia virus-infected cells. J Virol. 1977 Aug;23(2):315–322. doi: 10.1128/jvi.23.2.315-322.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manesis E. K., Cameron C. H., Gregoriadis G. Hepatitis B surface antigen-containing liposomes enhance humoral and cell-mediated immunity to the antigen. FEBS Lett. 1979 Jun 1;102(1):107–111. doi: 10.1016/0014-5793(79)80939-4. [DOI] [PubMed] [Google Scholar]
- Old L. J., Boyse E. A., Stockert E. The G (Gross) leukemia antigen. Cancer Res. 1965 Jul;25(6):813–819. [PubMed] [Google Scholar]
- SHAW C. M., ALVORD E. C., Jr, KIES M. W. STRAIGHT CHAIN HYDROCARBONS AS SUBSTITUTES FOR THE OIL IN FREUND'S ADJUVANTS IN THE PRODUCTION OF EXPERIMENTAL "ALLERGIC" ENCEPHALOMYELITIS IN THE GUINEA PIG. J Immunol. 1964 Jan;92:24–27. [PubMed] [Google Scholar]
- Senior J., Gregoriadis G. Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci. 1982 Jun 14;30(24):2123–2136. doi: 10.1016/0024-3205(82)90455-6. [DOI] [PubMed] [Google Scholar]
- Shek P. N., Lukovich S. The role of macrophages in promoting the antibody response mediated by liposome-associated protein antigens. Immunol Lett. 1982;5(6):305–309. doi: 10.1016/0165-2478(82)90118-3. [DOI] [PubMed] [Google Scholar]
- Snyder H. W., Jr, Stockert E., Fleissner E. Characterization of molecular species carrying gross cell surface antigen. J Virol. 1977 Aug;23(2):302–314. doi: 10.1128/jvi.23.2.302-314.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder S. L., Vannier W. E. Immunologic response to protein immobilized on the surface of liposomes via covalent azo-bonding. Biochim Biophys Acta. 1984 May 30;772(3):288–294. doi: 10.1016/0005-2736(84)90145-7. [DOI] [PubMed] [Google Scholar]
- Yasuda T., Dancey G. F., Kinsky S. C. Immunogenic properties of liposomal model membranes in mice. J Immunol. 1977 Dec;119(6):1863–1867. [PubMed] [Google Scholar]
- Yasuda T., Dancey G. F., Kinsky S. C. Immunogenicity of liposomal model membranes in mice: dependence on phospholipid composition. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1234–1236. doi: 10.1073/pnas.74.3.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Houte A. J., Snippe H., Schmitz M. G., Willers J. M. Characterization of immunogenic properties of haptenated liposomal model membranes in mice. V. Effect of membrane composition on humoral and cellular immunogenicity. Immunology. 1981 Nov;44(3):561–568. [PMC free article] [PubMed] [Google Scholar]
- van Houte A. J., Snippe H., Willers J. M. Characterization of immunogenic properties of haptenated liposomal model membranes in mice. I. Thymus independence of the antigen. Immunology. 1979 Jun;37(2):505–514. [PMC free article] [PubMed] [Google Scholar]