Skip to main content
Immunology logoLink to Immunology
. 1986 Jul;58(3):515–522.

Stage-specific secreted antigens of the parasitic larval stages of the nematode Ascaris.

M W Kennedy, F Qureshi
PMCID: PMC1453479  PMID: 3733151

Abstract

The excretory/secretory (ES) antigens of the infective (L2) and lung-stage (L3/4) larvae of Ascaris have been characterized by radio-iodination, immunoprecipitation, and SDS-PAGE. These antigens were found to be heterogeneous, ranging in apparent molecular weights from 14,000 to 410,000, were stage-specific and were the targets of considerable antibody responses mounted in infected hosts. A major contaminant of the ES of L3/4 recovered from the lungs of host animals was found to be serum albumin, which appeared to have been processed in some way by the worm or its secretions. A comparison between the humoral responses of three species of experimental animals showed that rabbits recognized all ES components, while mice and rats responded to distinct subsets of these. The mouse was distinguished by non-recognition of a major 14,000 MW antigen that was common to both L2 and L3/4 ES. The body fluid of adult Ascaris worms (ABF) was similarly characterized, and the antibody response to this was inferior to that of ES materials in discriminating between infected and non-infected animals. The major constituent of ABF was a 14,000 MW molecule homologous to that of larval ES products. The variability in host responsiveness to Ascaris antigens, revealed by the disparate responsiveness of three species of experimental animal, and the potential of ES for serodiagnosis, might prove of significance to immunological studies of ascariasis in man. Moreover, the heterogeneity of ES components questions the assertion of previous workers that the allergenic, IgE-potentiating, and protective activities of larval ES can be ascribed to one molecular species.

Full text

PDF
515

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler J., Croft A. R., Doe J. E., Gemmell D. K., Miller J. N., Orr T. S. Biological techniques for studying the allergenic components of nematodes. II. The characterisation of the allergen released by Ascaris suum maintaind in saline. J Immunol Methods. 1973 Apr;2(3):315–323. doi: 10.1016/0022-1759(73)90058-6. [DOI] [PubMed] [Google Scholar]
  2. Ambler J., Miller J. N., Johnson P., Orr T. S. Characterisation of an allergen extracted from Ascaris suum. Determination of the molecular weight, isoelectric point, amino acid and carbohydrate content of the native allergen. Immunochemistry. 1973 Dec;10(12):815–820. doi: 10.1016/0019-2791(73)90185-7. [DOI] [PubMed] [Google Scholar]
  3. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forsyth K. P., Copeman D. B., Mitchell G. F. Differences in the surface radioiodinated proteins of skin and uterine microfilariae of Onchocerca gibsoni. Mol Biochem Parasitol. 1984 Feb;10(2):217–229. doi: 10.1016/0166-6851(84)90009-4. [DOI] [PubMed] [Google Scholar]
  5. Fujita K., Tsukidate S. A highly purified allergen from excretory and secretory products of Dirofilaria immitis. Int J Parasitol. 1984 Dec;14(6):547–550. doi: 10.1016/0020-7519(84)90060-2. [DOI] [PubMed] [Google Scholar]
  6. Guerrero J., Silverman P. H. Ascaris suum: immune reactions in mice. I. Larval metabolic and somatic antigens. Exp Parasitol. 1969 Dec;26(3):272–281. doi: 10.1016/0014-4894(69)90119-2. [DOI] [PubMed] [Google Scholar]
  7. Hogarth-Scott R. S. The molecular weight range of nematode allergens. Immunology. 1967 Nov;13(5):535–537. [PMC free article] [PubMed] [Google Scholar]
  8. Hussain R., Bradbury S. M., Strejan G. Hypersensitivity to Ascaris antigens. 8. Characterization of a highly purified allergen. J Immunol. 1973 Jul;111(1):260–268. [PubMed] [Google Scholar]
  9. Jarrett E. E., Miller H. R. Production and activities of IgE in helminth infection. Prog Allergy. 1982;31:178–233. [PubMed] [Google Scholar]
  10. Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
  11. Kobayashi A., Kumada M., Ishizaki T. Evaluation of somatic and "ES" antigens causing immunological injury of mast cells in mice infected with Anisakis larvae. Jpn J Med Sci Biol. 1972 Oct;25(5):335–344. [PubMed] [Google Scholar]
  12. Maizels R. M., Meghji M., Ogilvie B. M. Restricted sets of parasite antigens from the surface of different stages and sexes of the nematode parasite Nippostrongylus brasiliensis. Immunology. 1983 Jan;48(1):107–121. [PMC free article] [PubMed] [Google Scholar]
  13. Maizels R. M., Philipp M., Dasgupta A., Partoni F. Human serum albumin is a major component on the surface of microfilariae of Wuchereria bancrofti. Parasite Immunol. 1984 Mar;6(2):185–190. doi: 10.1111/j.1365-3024.1984.tb00791.x. [DOI] [PubMed] [Google Scholar]
  14. Maizels R. M., Philipp M., Ogilvie B. M. Molecules on the surface of parasitic nematodes as probes of the immune response in infection. Immunol Rev. 1982;61:109–136. doi: 10.1111/j.1600-065x.1982.tb00375.x. [DOI] [PubMed] [Google Scholar]
  15. Maizels R. M., de Savigny D., Ogilvie B. M. Characterization of surface and excretory-secretory antigens of Toxocara canis infective larvae. Parasite Immunol. 1984 Jan;6(1):23–37. doi: 10.1111/j.1365-3024.1984.tb00779.x. [DOI] [PubMed] [Google Scholar]
  16. Markwell M. A., Fox C. F. Surface-specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3alpha,6alpha-diphenylglycoluril. Biochemistry. 1978 Oct 31;17(22):4807–4817. doi: 10.1021/bi00615a031. [DOI] [PubMed] [Google Scholar]
  17. O'Donnell I. J., Mitchell G. F. An investigation of the allergens of Ascaris lumbricoides using a radioallergosorbent test (RAST) and sera of naturally infected humans: comparison with an allergen for mice identified by a passive cutaneous anaphylaxis test. Aust J Biol Sci. 1978 Oct;31(5):459–487. doi: 10.1071/bi9780459. [DOI] [PubMed] [Google Scholar]
  18. O'Donnell I. J., Mitchell G. F. An investigation of the antigens of Ascaris lumbricoides using a radioimmunoassay and sera of naturally infected humans. Int Arch Allergy Appl Immunol. 1980;61(2):213–219. doi: 10.1159/000232435. [DOI] [PubMed] [Google Scholar]
  19. Ogilvie B. M., Jones V. E. Parasitological review. Nippostrongylus brasiliensis: a review of immunity and host-parasite relationship in the rat. Exp Parasitol. 1971 Feb;29(1):138–177. doi: 10.1016/0014-4894(71)90021-x. [DOI] [PubMed] [Google Scholar]
  20. Owen M. J., Barber B. H., Faulkes R. A., Crumpton M. J. Albumin associated with purified pig lymphocyte plasma membrane. Biochem J. 1980 Oct 15;192(1):49–57. doi: 10.1042/bj1920049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Philipp M., Parkhouse R. M., Ogilvie B. M. Changing proteins on the surface of a parasitic nematode. Nature. 1980 Oct 9;287(5782):538–540. doi: 10.1038/287538a0. [DOI] [PubMed] [Google Scholar]
  22. Philipp M., Worms M. J., McLaren D. J., Ogilvie B. M., Parkhouse R. M., Taylor P. M. Surface proteins of a filarial nematode: a major soluble antigen and a host component on the cuticle of Litomosoides carinii. Parasite Immunol. 1984 Jan;6(1):63–82. doi: 10.1111/j.1365-3024.1984.tb00782.x. [DOI] [PubMed] [Google Scholar]
  23. Stromberg B. E. IgE and IgG1 antibody production by a soluble product of Ascaris suum in the guinea-pig. Immunology. 1979 Nov;38(3):489–495. [PMC free article] [PubMed] [Google Scholar]
  24. Stromberg B. E. Potentiation of the reaginic (IgE) antibody response to ovalbumin in the guinea pig with a soluble metabolic product from Ascaris suum. J Immunol. 1980 Aug;125(2):833–836. [PubMed] [Google Scholar]
  25. Stromberg B. E. The isolation and partial characterization of a protective antigen from developing larvae of Ascaris suum. Int J Parasitol. 1979 Aug;9(4):307–311. doi: 10.1016/0020-7519(79)90079-1. [DOI] [PubMed] [Google Scholar]
  26. Sugane K., Oshima T. Purification and characterization of excretory and secretory antigen of Toxocara canis larvae. Immunology. 1983 Sep;50(1):113–120. [PMC free article] [PubMed] [Google Scholar]
  27. Tsuji M., Hayashi T., Yamamoto S., Sakata Y., Toshida T. IgE-type antibodies to Ascaris antigens in man. Int Arch Allergy Appl Immunol. 1977;55(1-6):78–81. doi: 10.1159/000231912. [DOI] [PubMed] [Google Scholar]
  28. Urban J. F., Jr, Douvres F. W., Xu S. Culture requirements of Ascaris suum larvae using a stationary multi-well system: increased survival, development and growth with cholesterol. Vet Parasitol. 1984 Jan;14(1):33–42. doi: 10.1016/0304-4017(84)90131-6. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES