Skip to main content
Immunology logoLink to Immunology
. 1986 Jul;58(3):429–436.

Characterization with monoclonal antibodies of human lymphocytes active in natural killing and antibody-dependent cell-mediated cytotoxicity of dengue virus-infected cells.

I Kurane, D Hebblewaite, F A Ennis
PMCID: PMC1453483  PMID: 3089915

Abstract

Non-immune human peripheral blood lymphocytes (PBL) lyse dengue virus-infected cells to a greater degree than uninfected cells. In the present study, the PBL active in lysing dengue virus-infected Raji cells are characterized using monoclonal antibodies and are compared to lymphocytes that lyse K562 cells. Leu11+ cells lyse dengue virus-infected cells and K562 cells. Leu11- cells lyse dengue virus-infected cells, but not K562 cells. In the Leu11+ fraction, Leu11+ Leu7- cells are more active than Leu11+ Leu7+ cells in lysing dengue virus-infected cells. T3+ cells also lyse dengue virus-infected cells, but they do not lyse K562 cells. T3- cells lyse both target cells. These results, along with the observation that Leu11+ cells and T3+ cells are different subsets of PBL, indicate that the PBL that are active in lysing dengue virus-infected cells are heterogeneous and are contained in Leu11+ and T3+ subsets. Leu11+ cells are more active than T3+ cells. Leu11+ cells are active in lysing dengue virus-infected cells by antibody-dependent cell-mediated cytotoxicity, whereas T3+ cells are not active.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo T., Balch C. M. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol. 1981 Sep;127(3):1024–1029. [PubMed] [Google Scholar]
  2. Alsheikhly A. R., Andersson T., Perlmann P. Virus-dependent cellular cytotoxicity in vitro. Mechanisms of induction and effector cell characterization. Scand J Immunol. 1985 Apr;21(4):329–335. doi: 10.1111/j.1365-3083.1985.tb01438.x. [DOI] [PubMed] [Google Scholar]
  3. Alsheikhly A., Orvell C., Härfast B., Andersson T., Perlmann P., Norrby E. Sendai-virus-induced cell-mediated cytotoxicity in vitro. The role of viral glycoproteins in cell-mediated cytotoxicity. Scand J Immunol. 1983 Feb;17(2):129–138. doi: 10.1111/j.1365-3083.1983.tb00775.x. [DOI] [PubMed] [Google Scholar]
  4. Arora D. J., Houde M., Justewicz D. M., Mandeville R. In vitro enhancement of human natural cell-mediated cytotoxicity by purified influenza virus glycoproteins. J Virol. 1984 Dec;52(3):839–845. doi: 10.1128/jvi.52.3.839-845.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradley T. P., Bonavida B. Mechanism of cell-mediated cytotoxicity at the single cell level. IV. Natural killing and antibody-dependent cellular cytotoxicity can be mediated by the same human effector cell as determined by the two-target conjugate assay. J Immunol. 1982 Nov;129(5):2260–2265. [PubMed] [Google Scholar]
  6. Breard J., Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. A monoclonal antibody reactive with human peripheral blood monocytes. J Immunol. 1980 Apr;124(4):1943–1948. [PubMed] [Google Scholar]
  7. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  8. Casali P., Oldstone M. B. Mechanisms of killing of measles virus-infected cells by human lymphocytes: interferon associated and unassociated cell-mediated cytotoxicity. Cell Immunol. 1982 Jul 1;70(2):330–344. doi: 10.1016/0008-8749(82)90334-3. [DOI] [PubMed] [Google Scholar]
  9. Casali P., Sissons J. G., Buchmeier M. J., Oldstone M. B. In vitro generation of human cytotoxic lymphocytes by virus. Viral glycoproteins induce nonspecific cell-mediated cytotoxicity without release of interferon. J Exp Med. 1981 Sep 1;154(3):840–855. doi: 10.1084/jem.154.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daughaday C. C., Brandt W. E., McCown J. M., Russell P. K. Evidence for two mechanisms of dengue virus infection of adherent human monocytes: trypsin-sensitive virus receptors and trypsin-resistant immune complex receptors. Infect Immun. 1981 May;32(2):469–473. doi: 10.1128/iai.32.2.469-473.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Engleman E. G., Warnke R., Fox R. I., Dilley J., Benike C. J., Levy R. Studies of a human T lymphocyte antigen recognized by a monoclonal antibody. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1791–1795. doi: 10.1073/pnas.78.3.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fitzgerald P. A., Evans R., Kirkpatrick D., Lopez C. Heterogeneity of human NK cells: comparison of effectors that lyse HSV-1-infected fibroblasts and K562 erythroleukemia targets. J Immunol. 1983 Apr;130(4):1663–1667. [PubMed] [Google Scholar]
  13. Halstead S. B. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis. 1979 Oct;140(4):527–533. doi: 10.1093/infdis/140.4.527. [DOI] [PubMed] [Google Scholar]
  14. Halstead S. B. The Alexander D. Langmuir Lecture. The pathogenesis of dengue. Molecular epidemiology in infectious disease. Am J Epidemiol. 1981 Nov;114(5):632–648. doi: 10.1093/oxfordjournals.aje.a113235. [DOI] [PubMed] [Google Scholar]
  15. Hendricks R. L., Sugar J. Lysis of herpes simplex virus-infected targets. II. Nature of the effector cells. Cell Immunol. 1984 Feb;83(2):262–270. doi: 10.1016/0008-8749(84)90305-8. [DOI] [PubMed] [Google Scholar]
  16. Kumagai K., Itoh K., Hinuma S., Tada M. Pretreatment of plastic Petri dishes with fetal calf serum. A simple method for macrophage isolation. J Immunol Methods. 1979;29(1):17–25. doi: 10.1016/0022-1759(79)90121-2. [DOI] [PubMed] [Google Scholar]
  17. Kung P., Goldstein G., Reinherz E. L., Schlossman S. F. Monoclonal antibodies defining distinctive human T cell surface antigens. Science. 1979 Oct 19;206(4416):347–349. doi: 10.1126/science.314668. [DOI] [PubMed] [Google Scholar]
  18. Kurane I., Binn L. N., Bancroft W. H., Ennis F. A. Human lymphocyte responses to hepatitis A virus-infected cells: interferon production and lysis of infected cells. J Immunol. 1985 Sep;135(3):2140–2144. [PubMed] [Google Scholar]
  19. Kurane I., Hebblewaite D., Brandt W. E., Ennis F. A. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J Virol. 1984 Oct;52(1):223–230. doi: 10.1128/jvi.52.1.223-230.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lanier L. L., Le A. M., Phillips J. H., Warner N. L., Babcock G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983 Oct;131(4):1789–1796. [PubMed] [Google Scholar]
  21. Lanier L. L., Phillips J. H., Warner N. L., Babcock G. F. A human natural killer cell-associated antigen defined by monoclonal antibody anti-Leu (NKP-15): functional and two-color flow cytometry analysis. J Leukoc Biol. 1984 Jan;35(1):11–17. doi: 10.1002/jlb.35.1.11. [DOI] [PubMed] [Google Scholar]
  22. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  23. Neville M. E. Human killer cells and natural killer cells: distinct subpopulations of Fc receptor-bearing lymphocytes. J Immunol. 1980 Dec;125(6):2604–2609. [PubMed] [Google Scholar]
  24. Ortaldo J. R., Sharrow S. O., Timonen T., Herberman R. B. Determination of surface antigens on highly purified human NK cells by flow cytometry with monoclonal antibodies. J Immunol. 1981 Dec;127(6):2401–2409. [PubMed] [Google Scholar]
  25. PULVERTAFT J. V. CYTOLOGY OF BURKITT'S TUMOUR (AFRICAN LYMPHOMA). Lancet. 1964 Feb 1;1(7327):238–240. doi: 10.1016/s0140-6736(64)92345-1. [DOI] [PubMed] [Google Scholar]
  26. Timonen T., Ortaldo J. R., Herberman R. B. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 1981 Mar 1;153(3):569–582. doi: 10.1084/jem.153.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES