Skip to main content
Immunology logoLink to Immunology
. 1985 Mar;54(3):439–448.

Blood clearance and tissue localization of soluble aggregates of IgG in NZB/W and NZB mice.

D W Knutson, D Chia, E V Barnett, L Levy
PMCID: PMC1453529  PMID: 3972435

Abstract

We studied the capacity of the mononuclear phagocytic system (MPS) of NZB/W and NZB mice to clear trace and saturating doses of soluble heat-aggregates of IgG (A-IgG) from the blood. Mature female NZB/W mice (aged 5-7 months) with early glomerulonephritis showed no differences in MPS clearance of A-IgG compared with younger NZB/W mice without glomerulonephritis. In contrast, mature NZB mice had a more rapid clearance of A-IgG and greater MPS localization of A-IgG than their younger counterparts. Further studies showed that older NZB/W mice (greater than 10 months) had a slightly more rapid clearance of A-IgG than 2-5-month-old mice (t 1/2 = 3.34 +/- 0.27 SEM vs 3.76 +/- 0.34 SEM, P less than 0.01), whereas NZB mice mice older than 10 months of age had a markedly more rapid clearance than 2-5-month-old NZB mice (t 1/2 = 2.84 +/- 0.15 SEM vs 3.76 +/- 0.32, P less than 0.005). The more rapid clearance seen in NZB mice was partly explained by greater splenic localization of A-IgG and appeared to be restricted to Fc- and/or C3b-receptor mediated clearance, in that clearance of aggregated albumin was not changed. We conclude that NZB/W mice have no impairment in MPS clearance capacity at the onset of their glomerulonephritis, and slightly increased clearance capacity late in the course of their disease. Thus, the presence of circulating immune complexes and the development of glomerulonephritis in NZB/W mice is unlikely to be due to a diminished MPS clearance capacity. NZB mice have an increase in MPS capacity to clear A-IgG as a function of age.

Full text

PDF
439

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe C., Chia D., Barnett E. V., Pearson C. M., Hays E. A., Shiokawa Y. Correlation of natural antibodies to nuclear substances in New Zealand and other strains of mouse. Clin Immunol Immunopathol. 1976 Nov;6(3):369–375. doi: 10.1016/0090-1229(76)90090-8. [DOI] [PubMed] [Google Scholar]
  2. Chia D., Dorsch C., Barnett E. V., Levy L. Metabolism of exogenous single stranded DNA in normal and NZB/W mice. Immunology. 1977 Mar;32(3):351–358. [PMC free article] [PubMed] [Google Scholar]
  3. Chused T. M., Steinberg A. D., Talal N. The clearance and localization of nucleic acids by New Zealand and normal mice. Clin Exp Immunol. 1972 Dec;12(4):465–476. [PMC free article] [PubMed] [Google Scholar]
  4. Cornacoff J. B., Hebert L. A., Smead W. L., VanAman M. E., Birmingham D. J., Waxman F. J. Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest. 1983 Feb;71(2):236–247. doi: 10.1172/JCI110764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenberg H., Simmons D. H., Abe C., Chia D., Barnett E. V. Immune complex disease in the New Zealand black/white hybrid mouse lung. Chest. 1976 Feb;69(2 Suppl):284–286. doi: 10.1378/chest.69.2_supplement.284. [DOI] [PubMed] [Google Scholar]
  6. Fearon D. T. Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J Exp Med. 1980 Jul 1;152(1):20–30. doi: 10.1084/jem.152.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finbloom D. S., Plotz P. H. Studies of reticuloendothelial function in the mouse with model immune complexes. II. Serum clearance, tissue uptake, and reticuloendothelial saturation in NZB/W mice. J Immunol. 1979 Oct;123(4):1600–1603. [PMC free article] [PubMed] [Google Scholar]
  8. Frank M. M., Hamburger M. I., Lawley T. J., Kimberly R. P., Plotz P. H. Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. N Engl J Med. 1979 Mar 8;300(10):518–523. doi: 10.1056/NEJM197903083001002. [DOI] [PubMed] [Google Scholar]
  9. Iida K., Mornaghi R., Nussenzweig V. Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus. J Exp Med. 1982 May 1;155(5):1427–1438. doi: 10.1084/jem.155.5.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katayama S., Chia D., Knutson D. W., Barnett E. V. Decreased Fc receptor avidity and degradative function of monocytes from patients with systemic lupus erythematosus. J Immunol. 1983 Jul;131(1):217–222. [PubMed] [Google Scholar]
  11. Katayama S., Chia D., Nasu H., Knutson D. W. Increased Fc receptor activity in monocytes from patients with rheumatoid arthritis: a study of monocyte binding and catabolism of soluble aggregates of IgG in vitro. J Immunol. 1981 Aug;127(2):643–647. [PubMed] [Google Scholar]
  12. Kijlstra A., Knutson D. W., Daha M. R., van Es L. A. Clearance and glomerular localization of preformed DNP anti-DNP immune complexes. Scand J Immunol. 1979;10(5):421–429. doi: 10.1111/j.1365-3083.1979.tb01371.x. [DOI] [PubMed] [Google Scholar]
  13. Kijlstra A., Knutson D. W., van der Lelij A., van Es L. A. Characteristics of soluble immune complexes prepared from oligovalent DNP conjugates and anti-DNP antibodies. J Immunol Methods. 1977;17(3-4):263–277. doi: 10.1016/0022-1759(77)90109-0. [DOI] [PubMed] [Google Scholar]
  14. Kijlstra A., Van Der Lelij A., Knutson W., Fleuren G. J., Vanes L. A. The influence of phagocyte function on glomerular localization of aggregated IgM in rats. Clin Exp Immunol. 1978 May;32(2):207–217. [PMC free article] [PubMed] [Google Scholar]
  15. Knutson D. W., Kijlstra A., Lentz H., van Es L. A. Isolation of stable aggregates of IgG by zonal ultracentrifugation in sucrose gradients containing albumin. Immunol Commun. 1979;8(3):337–345. doi: 10.3109/08820137909050047. [DOI] [PubMed] [Google Scholar]
  16. Magilavy D. B., Rifai A., Plotz P. H. An abnormality of immune complex kinetics in murine lupus. J Immunol. 1981 Feb;126(2):770–774. [PubMed] [Google Scholar]
  17. Medof M. E., Iida K., Mold C., Nussenzweig V. Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes. J Exp Med. 1982 Dec 1;156(6):1739–1754. doi: 10.1084/jem.156.6.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller G. W., Steinberg A. D., Green I., Nussenzweig V. Complement-dependent alterations in the handling of immune complexes by NZB/W mice. J Immunol. 1975 Apr;114(4):1166–1170. [PubMed] [Google Scholar]
  19. Miyakawa Y., Yamada A., Kosaka K., Tsuda F., Kosugi E., Mayumi M. Defective immune-adherence (C3b) receptor on erythrocytes from patients with systemic lupus erythematosus. Lancet. 1981 Sep 5;2(8245):493–497. doi: 10.1016/s0140-6736(81)90882-5. [DOI] [PubMed] [Google Scholar]
  20. Morgan A. G., Steward M. W. Macrophage clearance function and immune complex disease in New Zealand Black/White F1 hybrid mice. Clin Exp Immunol. 1976 Oct;26(1):133–136. [PMC free article] [PubMed] [Google Scholar]
  21. Normann S. J. Function of the Reticuloendothelial System IV. Evidence for Two Types of Particle-Induced Reticuloendothelial Paralysis. Infect Immun. 1970 Apr;1(4):327–333. doi: 10.1128/iai.1.4.327-333.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Normann S. J. Kinetics of phagocytosis. 3. Two colloid reactions, competitive inhibition, and degree of inhibition between similar and dissimilar foreign particles. Lab Invest. 1974 Sep;31(3):286–293. [PubMed] [Google Scholar]
  23. Theofilopoulos A. N., Dixon F. J. The biology and detection of immune complexes. Adv Immunol. 1979;28:89–220. doi: 10.1016/s0065-2776(08)60800-7. [DOI] [PubMed] [Google Scholar]
  24. Zubler R. H., Lambert P. H. Detection of immune complexes in human diseases. Prog Allergy. 1978;24:1–48. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES