Abstract
Spleen cells from mice undergoing a parasite-induced eosinophilia were fused with an azaguanine-resistant subline of the thymoma BW5147. A stable T hybrid (NIMP-TH1) was isolated and selected by recloning repeatedly by limiting dilution. The hybrid nature of NIMP-TH1 was confirmed by its expression of both parental alleles of Thy-1 and by chromosome analysis (modal chromosome number 102). On stimulation with phorbol myristate acetate, this hybrid releases a soluble activity which acts as a stimulator of eosinophil differentiation in vitro. Addition of hybrid conditioned medium to bone marrow cultures results in a selective stimulation of eosinophil production with no detectable increase in neutrophil or macrophage differentiation. The lymphokines interleukin-2 (IL-2) and interferon (IFN) are undetectable in NIMP-TH1 conditioned media. Although at high concentrations NIMP-TH1 supernatants are able to support very low levels of DNA synthesis in an IL-3-dependent cell line, and IL-3 appears to support low levels of eosinophil differentiation, dose-response curves show that the factor produced by NIMP-TH1 can be clearly segregated from IL-3 by its marked specificity for cells belonging to the eosinophil lineage. The factor present in these supernatants has been provisionally termed eosinophil differentiation factor (EDF).
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen P. T., Giron D. J. Rapid sensitive assay for interferons based on the inhibition of MM virus nucleic acid synthesis. Appl Microbiol. 1970 Sep;20(3):317–322. doi: 10.1128/am.20.3.317-322.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartelmez S. H., Dodge W. H., Mahmoud A. A., Bass D. A. Stimulation of eosinophil production in vitro by eosinophilopoietin and spleen-cell-derived eosinophil growth-stimulating factor. Blood. 1980 Oct;56(4):706–711. [PubMed] [Google Scholar]
- Basten A., Beeson P. B. Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med. 1970 Jun 1;131(6):1288–1305. doi: 10.1084/jem.131.6.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bazill G. W., Haynes M., Garland J., Dexter T. M. Characterization and partial purification of a haemopoietic cell growth factor in WEHI-3 cell conditioned medium. Biochem J. 1983 Mar 15;210(3):747–759. doi: 10.1042/bj2100747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess A. W., Metcalf D. The nature and action of granulocyte-macrophage colony stimulating factors. Blood. 1980 Dec;56(6):947–958. [PubMed] [Google Scholar]
- Comings D. E. Methods and mechanisms of chromosome banding. Methods Cell Biol. 1978;17:115–132. doi: 10.1016/s0091-679x(08)61140-1. [DOI] [PubMed] [Google Scholar]
- Dexter T. M., Garland J., Scott D., Scolnick E., Metcalf D. Growth of factor-dependent hemopoietic precursor cell lines. J Exp Med. 1980 Oct 1;152(4):1036–1047. doi: 10.1084/jem.152.4.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrar J. J., Fuller-Farrar J., Simon P. L., Hilfiker M. L., Stadler B. M., Farrar W. L. Thymoma production of T cell growth factor (Interleukin 2). J Immunol. 1980 Dec;125(6):2555–2558. [PubMed] [Google Scholar]
- Fine D. P., Buchanan R. D., Colley D. G. Schistosoma mansoni infection in mice depleted of thymus-dependent lymphocytes. I. Eosinophilia and immunologic responses to a schistosomal egg preparation. Am J Pathol. 1973 May;71(2):193–206. [PMC free article] [PubMed] [Google Scholar]
- Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977 Apr 7;266(5602):550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
- Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
- Howard M., Burgess A., McPhee D., Metcalf D. T-cell hybridoma secreting hemopoietic regulatory molecules: granulocyte-macrophage and eosinophil colony-stimulating factors. Cell. 1979 Dec;18(4):993–999. doi: 10.1016/0092-8674(79)90211-3. [DOI] [PubMed] [Google Scholar]
- Hämmerling G. J. T lymphocyte tissue culture lines produced by cell hybridization. Eur J Immunol. 1977 Oct;7(10):743–746. doi: 10.1002/eji.1830071018. [DOI] [PubMed] [Google Scholar]
- Ihle J. N., Keller J., Greenberger J. S., Henderson L., Yetter R. A., Morse H. C., 3rd Phenotypic characteristics of cell lines requiring interleukin 3 for growth. J Immunol. 1982 Oct;129(4):1377–1383. [PubMed] [Google Scholar]
- Ihle J. N., Keller J., Oroszlan S., Henderson L. E., Copeland T. D., Fitch F., Prystowsky M. B., Goldwasser E., Schrader J. W., Palaszynski E. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol. 1983 Jul;131(1):282–287. [PubMed] [Google Scholar]
- Iscove N. N., Roitsch C. A., Williams N., Guilbert L. J. Molecules stimulating early red cell, granulocyte, macrophage, and megakaryocyte precursors in culture: similarity in size, hydrophobicity, and charge. J Cell Physiol Suppl. 1982;1:65–78. doi: 10.1002/jcp.1041130412. [DOI] [PubMed] [Google Scholar]
- Johnson G. R., Metcalf D. Detection of a new type of mouse eosinophil colony by Luxol-fast-blue staining. Exp Hematol. 1980 May;8(5):549–561. [PubMed] [Google Scholar]
- Johnson G. R., Nicholas W. L., Metcalf D., McKenzie I. F., Mitchell G. F. Peritoneal cell population of mice infected with Mesocestoides corti as a source of eosinophils. Int Arch Allergy Appl Immunol. 1979;59(3):315–322. doi: 10.1159/000232275. [DOI] [PubMed] [Google Scholar]
- Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
- Lopez A. F., Strath M., Sanderson C. J. Differentiation antigens on mouse eosinophils and neutrophils identified by monoclonal antibodies. Br J Haematol. 1984 Jul;57(3):489–494. doi: 10.1111/j.1365-2141.1984.tb02923.x. [DOI] [PubMed] [Google Scholar]
- Metcalf D., Parker J., Chester H. M., Kincade P. W. Formation of eosinophilic-like granulocytic colonies by mouse bone marrow cells in vitro. J Cell Physiol. 1974 Oct;84(2):275–289. doi: 10.1002/jcp.1040840214. [DOI] [PubMed] [Google Scholar]
- Nielsen K., Fogh L., Andersen S. Eosinophil response to migrating Ascaris suum larvae in normal and congenitally thymus-less mice. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):919–920. doi: 10.1111/j.1699-0463.1974.tb02394.x. [DOI] [PubMed] [Google Scholar]
- Ruscetti F. W., Cypess R. H., Chervenick P. A. Specific release of neutrophillic- and eosinophilic-stimulating factors from sensitized lymphocytes. Blood. 1976 May;47(5):757–765. [PubMed] [Google Scholar]
- Taniguchi M., Miller J. F. Specific suppressive factors produced by hybridomas derived from the fusion of enriched suppressor T cells and a T lymphoma cell line. J Exp Med. 1978 Aug 1;148(2):373–382. doi: 10.1084/jem.148.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
