Skip to main content
Immunology logoLink to Immunology
. 1987 Oct;62(2):207–213.

Synthesis of African swine fever (ASF) virus-specific antibodies in vitro in a porcine leucocyte system.

I Casal 1, E Viñuela 1, L Enjuanes 1
PMCID: PMC1453971  PMID: 3679284

Abstract

We have developed a system of porcine peripheral blood mononuclear cells for the synthesis of antibodies in vitro, induced by partially purified African swine fever virus particles inactivated with formaldehyde. The antibodies synthesized were detected by a radioimmunoassay with a sensitivity of 3 ng of immunoglobulin. Primary responses were dependent on supernatants from peripheral blood mononuclear cells incubated with concanavalin A, macrophages and T lymphocytes. Secondary responses did not require concanavalin A-conditioned medium. The kinetics of antibody synthesis was similar in both primary and secondary responses, but the extent of synthesis was four to five times larger in the secondary than in the primary response. The antibodies synthesized in vitro were specific for African swine fever virus antigens (and did not react with viral antigen other than that from African swine fever virus particles), in contrast to pokeweed mitogen-induced antibodies, which reacted with all the antigens tested. African swine fever virus-induced antibodies did not neutralize the virus. These results and the inability of the virus to stimulate a primary response in the absence of concanavalin A supernatants indicate that inactivated African swine fever virus is not a polyclonal stimulator.

Full text

PDF
207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black D. N., Brown F. Purification and physicochemical characteristics of African swine fever virus. J Gen Virol. 1976 Sep;32(3):509–518. doi: 10.1099/0022-1317-32-3-509. [DOI] [PubMed] [Google Scholar]
  2. Callard R. E. Specific in vitro antibody response to influenza virus by human blood lymphocytes. Nature. 1979 Dec 13;282(5740):734–736. doi: 10.1038/282734a0. [DOI] [PubMed] [Google Scholar]
  3. Casal I., Enjuanes L., Viñuela E. Porcine leukocyte cellular subsets sensitive to African swine fever virus in vitro. J Virol. 1984 Oct;52(1):37–46. doi: 10.1128/jvi.52.1.37-46.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Boer C. J. Studies to determine neutralizing antibody in sera from animals recovered from African swine fever and laboratory animals inoculated with African virus with adjuvants. Arch Gesamte Virusforsch. 1967;20(2):164–179. doi: 10.1007/BF01241270. [DOI] [PubMed] [Google Scholar]
  5. Enjuanes L., Carrascosa A. L., Moreno M. A., Viñuela E. Titration of African swine fever (ASF) virus. J Gen Virol. 1976 Sep;32(3):471–477. doi: 10.1099/0022-1317-32-3-471. [DOI] [PubMed] [Google Scholar]
  6. Falkoff R. M., Peters M., Fauci A. S. T cell enrichment and depletion of human peripheral blood mononuclear cell preparations. Unexpected findings in the study of the functional activities of the separated populations. J Immunol Methods. 1982;50(1):39–49. doi: 10.1016/0022-1759(82)90302-7. [DOI] [PubMed] [Google Scholar]
  7. García-Barreno B., Sanz A., Nogal M. L., Viñuela E., Enjuanes L. Monoclonal antibodies of African swine fever virus: antigenic differences among field virus isolates and viruses passaged in cell culture. J Virol. 1986 May;58(2):385–392. doi: 10.1128/jvi.58.2.385-392.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  9. Goodman-Snitkoff G., Mannino R. J., McSharry J. J. The glycoprotein isolated from vesicular stomatitis virus is mitogenic for mouse B lymphocytes. J Exp Med. 1981 Jun 1;153(6):1489–1502. doi: 10.1084/jem.153.6.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodman-Snitkoff G., McSharry J. J. Mitogenic activity of Sindbis virus and its isolated glycoproteins. Infect Immun. 1982 Dec;38(3):1242–1248. doi: 10.1128/iai.38.3.1242-1248.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hess W. R. African swine fever: a reassessment. Adv Vet Sci Comp Med. 1981;25:39–69. [PubMed] [Google Scholar]
  12. Ihle J. N., Yurconic M., Jr, Hanna M. G., Jr Autogenous immunity to endogenous RNA tumor virus. Radioimmune precipitation assay of mouse serum antibody levels. J Exp Med. 1973 Jul 1;138(1):194–208. doi: 10.1084/jem.138.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  14. Lane H. C., Volkman D. J., Whalen G., Fauci A. S. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements. J Exp Med. 1981 Oct 1;154(4):1043–1057. doi: 10.1084/jem.154.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lucas C. J., Ubels-Postma J., Galama J. M., Rezee A. Studies on the mechanism of measles virus-induced suppression of lymphocyte functions in vitro: lack of a role for interferon and monocytes. Cell Immunol. 1978 May;37(2):448–458. doi: 10.1016/0008-8749(78)90212-5. [DOI] [PubMed] [Google Scholar]
  16. MALMQUIST W. A., HAY D. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res. 1960 Jan;21:104–108. [PubMed] [Google Scholar]
  17. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nowinski R. C., Lostrom M. E., Tam M. R., Stone M. R., Burnette W. N. The isolation of hybrid cell lines producing monoclonal antibodies against the p15(E) protein of ecotropic murine leukemia viruses. Virology. 1979 Feb;93(1):111–126. doi: 10.1016/0042-6822(79)90280-0. [DOI] [PubMed] [Google Scholar]
  19. Pan I. C., De Boer C. J., Heuschele W. P. Hypergammaglobulinemia in swine infected with African swine fever virus. Proc Soc Exp Biol Med. 1970 Jun;134(2):367–371. doi: 10.3181/00379727-134-34794. [DOI] [PubMed] [Google Scholar]
  20. Pescovitz M. D., Lunney J. K., Sachs D. H. Preparation and characterization of monoclonal antibodies reactive with porcine PBL. J Immunol. 1984 Jul;133(1):368–375. [PubMed] [Google Scholar]
  21. Roos D., Loos J. A. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. I. Stimulation by phytohaemagglutinin. Biochim Biophys Acta. 1970 Dec 29;222(3):565–582. doi: 10.1016/0304-4165(70)90182-0. [DOI] [PubMed] [Google Scholar]
  22. Sachs D. H., Leight G., Cone J., Schwarz S., Stuart L., Rosenberg S. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation. 1976 Dec;22(6):559–567. doi: 10.1097/00007890-197612000-00004. [DOI] [PubMed] [Google Scholar]
  23. Sanz A., García-Barreno B., Nogal M. L., Viñuela E., Enjuanes L. Monoclonal antibodies specific for African swine fever virus proteins. J Virol. 1985 Apr;54(1):199–206. doi: 10.1128/jvi.54.1.199-206.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tabares E., Fernandez M., Salvador-Temprano E., Carnero M. E., Sanchez-Botija C. A reliable enzyme linked immunosorbent assay for African swine fever using the major structural protein as antigenic reagent. Arch Virol. 1981;70(3):297–300. doi: 10.1007/BF01315136. [DOI] [PubMed] [Google Scholar]
  25. Thiele D. L., Kurosaka M., Lipsky P. E. Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J Immunol. 1983 Nov;131(5):2282–2290. [PubMed] [Google Scholar]
  26. Thomsen A. R., Bro-Jørgensen K., Jensen B. L. Lymphocytic choriomeningitis virus-induced immunosuppression: evidence for viral interference with T-cell maturation. Infect Immun. 1982 Sep;37(3):981–986. doi: 10.1128/iai.37.3.981-986.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Uytdehaag F. G., Osterhaus A. D., Loggen H. G., Bakker R. H., van Asten J. A., Kreeftenberg J. G., van der Marel P., van Steenis B. Induction of antigen-specific antibody response in human peripheral blood lymphocytes in vitro by a dog kidney cell vaccine against rabies virus (DKCV). J Immunol. 1983 Sep;131(3):1234–1239. [PubMed] [Google Scholar]
  28. Wainberg M. A., Israel E. Viral inhibition of lymphocyte mitogenesis. I. Evidence for the nonspecificity of the effect. J Immunol. 1980 Jan;124(1):64–70. [PubMed] [Google Scholar]
  29. Wardley R. C. Effect of African swine fever on lymphocyte mitogenesis. Immunology. 1982 May;46(1):215–220. [PMC free article] [PubMed] [Google Scholar]
  30. Wardley R. C., de M Andrade C., Black D. N., de Castro Portugal F. L., Enjuanes L., Hess W. R., Mebus C., Ordas A., Rutili D., Sanchez Vizcaino J. African Swine Fever virus. Brief review. Arch Virol. 1983;76(2):73–90. doi: 10.1007/BF01311692. [DOI] [PubMed] [Google Scholar]
  31. Wong-Staal F., Gallo R. C. Human T-lymphotropic retroviruses. Nature. 1985 Oct 3;317(6036):395–403. doi: 10.1038/317395a0. [DOI] [PubMed] [Google Scholar]
  32. Woodruff J. F., Woodruff J. J. T lymphocyte interaction with viruses and virus-infected tissues. Prog Med Virol. 1975;19:120–160. [PubMed] [Google Scholar]
  33. Zisman B., Hirsch M. S., Allison A. C. Selective effects of anti-macrophage serum, silica and anti-lymphocyte serum on pathogenesis of herpes virus infection of young adult mice. J Immunol. 1970 May;104(5):1155–1159. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES