Skip to main content
Immunology logoLink to Immunology
. 1987 Oct;62(2):321–327.

Hypothalamic control of certain aspects of natural immunity in the mouse.

N Belluardo 1, G Mudó 1, S Cella 1, A Santoni 1, G Forni 1, M Bindoni 1
PMCID: PMC1453985  PMID: 3679287

Abstract

Electrothermocoagulation (ETC) of the individual nuclei of the median region of the hypothalamus (MH) in the C57BL/6 mouse leads to a significant reduction in the cytotoxic activity of natural killer cells (NK) and the number of large granular lymphocytes (LGL) compared with intact or sham-operated controls. This effect, however, is less than that observed after simultaneous destruction of all MH nuclei. By contrast, no significant change in NK activity was noted after ETC of the anterior (AH) or posterior (PH) regions. Diminution of NK activity due to nuclear MH destruction is not an outcome of the change in adenohypophysis secretion provoked by hypothalamic lesion. Natural cytotoxic activity was markedly increased after ETG located either in AH, or MH, or PH. These results indicate that NK- and NC-mediated immunity is governed by a control mechanism situated in the hypothalamus.

Full text

PDF
321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardos P., Degenne D., Lebranchu Y., Bizière K., Renoux G. Neocortical lateralization of NK activity in mice. Scand J Immunol. 1981;13(6):609–611. doi: 10.1111/j.1365-3083.1981.tb00176.x. [DOI] [PubMed] [Google Scholar]
  2. Bindoni M., Belluardo N., Marchese A. E., Cardile V., Mudò G., Cella S., Laguidara A., Denatale G. Increased tumor cell multiplication after radiofrequency lesions in median hypothalamus in the mouse and rat. Neuroendocrinology. 1986;42(5):407–415. doi: 10.1159/000124479. [DOI] [PubMed] [Google Scholar]
  3. Bykowsky M. J., Stutman O. The cells responsible for murine natural cytotoxic (NC) activity: a multi-lineage system. J Immunol. 1986 Aug 15;137(4):1120–1126. [PubMed] [Google Scholar]
  4. Cardinali D. P., Ritta M. N. The role of prostaglandins in neuroendocrine junctions: studies in the pineal gland and the hypothalamus. Neuroendocrinology. 1983 Feb;36(2):152–160. doi: 10.1159/000123452. [DOI] [PubMed] [Google Scholar]
  5. De Landazuri M. O., Herberman R. B. Immune response to Gross virus-induced lymphoma. 3. Characteristics of the cellular immune response. J Natl Cancer Inst. 1972 Jul;49(1):147–154. [PubMed] [Google Scholar]
  6. Faith R. E., Liang H. J., Murgo A. J., Plotnikoff N. P. Neuroimmunomodulation with enkephalins: enhancement of human natural killer (NK) cell activity in vitro. Clin Immunol Immunopathol. 1984 Jun;31(3):412–418. doi: 10.1016/0090-1229(84)90093-x. [DOI] [PubMed] [Google Scholar]
  7. Forni G., Bindoni M., Santoni A., Belluardo N., Marchese A. E., Giovarelli M. Radiofrequency destruction of the tuberoinfundibular region of hypothalamus permanently abrogates NK cell activity in mice. Nature. 1983 Nov 10;306(5939):181–184. doi: 10.1038/306181a0. [DOI] [PubMed] [Google Scholar]
  8. Frohman L. A., Bernardis L. L., Schnatz J. D., Burek L. Plasma insulin and triglyceride levels after hypothalamic lesions in weanling rats. Am J Physiol. 1969 Jun;216(6):1496–1501. doi: 10.1152/ajplegacy.1969.216.6.1496. [DOI] [PubMed] [Google Scholar]
  9. GUILLEMIN R., CLAYTON G. W., LIPSCOMB H. S., SMITH J. D. Fluorometric measurement of rat plasma and adrenal corticosterone concentration; a note on technical details. J Lab Clin Med. 1959 May;53(5):830–832. [PubMed] [Google Scholar]
  10. Gerli R., Rambotti P., Nicoletti I., Orlandi S., Migliorati G., Riccardi C. Reduced number of natural killer cells in patients with pathological hyperprolactinemia. Clin Exp Immunol. 1986 May;64(2):399–406. [PMC free article] [PubMed] [Google Scholar]
  11. Hochman P. S., Cudkowicz G. Suppression of natural cytotoxicity by spleen cells of hydrocortisone-treated mice. J Immunol. 1979 Sep;123(3):968–976. [PubMed] [Google Scholar]
  12. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  13. Kiessling R., Klein E., Pross H., Wigzell H. "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 1975 Feb;5(2):117–121. doi: 10.1002/eji.1830050209. [DOI] [PubMed] [Google Scholar]
  14. Kita T., Chihara K., Abe H., Minamitani N., Kaji H., Kodama H., Kashio Y., Okimura Y., Fujita T., Ling N. Regional distribution of rat growth hormone releasing factor-like immunoreactivity in rat hypothalamus. Endocrinology. 1985 Jan;116(1):259–262. doi: 10.1210/endo-116-1-259. [DOI] [PubMed] [Google Scholar]
  15. Lipinski M., Braham K., Caillaud J. M., Carlu C., Tursz T. HNK-1 antibody detects an antigen expressed on neuroectodermal cells. J Exp Med. 1983 Nov 1;158(5):1775–1780. doi: 10.1084/jem.158.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mathews P. M., Froelich C. J., Sibbitt W. L., Jr, Bankhurst A. D. Enhancement of natural cytotoxicity by beta-endorphin. J Immunol. 1983 Apr;130(4):1658–1662. [PubMed] [Google Scholar]
  17. Müller E. E., Locatelli V., Cella S., Peñalva A., Novelli A., Cocchi D. Prolactin-lowering and -releasing drugs. Mechanisms of action and therapeutic applications. Drugs. 1983 Apr;25(4):399–432. doi: 10.2165/00003495-198325040-00004. [DOI] [PubMed] [Google Scholar]
  18. Niswender G. D., Chen C. L., Midgley A. R., Jr, Meites J., Ellis S. Radioimmunoassay for rat prolactin. Proc Soc Exp Biol Med. 1969 Mar;130(3):793–797. doi: 10.3181/00379727-130-33657. [DOI] [PubMed] [Google Scholar]
  19. REYNOLDS R. W. AN IRRITATIVE HYPOTHESIS CONCERNING THE HYPOTHALAMIC REGULATION OF FOOD INTAKE. Psychol Rev. 1965 Mar;72:105–116. doi: 10.1037/h0021815. [DOI] [PubMed] [Google Scholar]
  20. Robb R. J. The suppressive effect of gangliosides upon IL 2-dependent proliferation as a function of inhibition of IL 2-receptor association. J Immunol. 1986 Feb 1;136(3):971–976. [PubMed] [Google Scholar]
  21. Russell D. H., Kibler R., Matrisian L., Larson D. F., Poulos B., Magun B. E. Prolactin receptors on human T and B lymphocytes: antagonism of prolactin binding by cyclosporine. J Immunol. 1985 May;134(5):3027–3031. [PubMed] [Google Scholar]
  22. Saxena Q. B., Saxena R. K., Adler W. H. Regulation of natural killer activity in vivo. III. Effect of hypophysectomy and growth hormone treatment on the natural killer activity of the mouse spleen cell population. Int Arch Allergy Appl Immunol. 1982;67(2):169–174. [PubMed] [Google Scholar]
  23. Schalch D. S., Reichlin S. Plasma growth hormone concentration in the rat determined by radioimmunoassay: influence of sex, pregnancy, lactation, anesthesia, hypophysectomy and extrasellar pituitary transplants. Endocrinology. 1966 Aug;79(2):275–280. doi: 10.1210/endo-79-2-275. [DOI] [PubMed] [Google Scholar]
  24. Seaman W. E., Blackman M. A., Gindhart T. D., Roubinian J. R., Loeb J. M., Talal N. beta-Estradiol reduces natural killer cells in mice. J Immunol. 1978 Dec;121(6):2193–2198. [PubMed] [Google Scholar]
  25. Seaman W. E., Merigan T. C., Talal N. Natural killing in estrogen-treated mice responds poorly to poly I.C despite normal stimulation of circulating interferon. J Immunol. 1979 Dec;123(6):2903–2905. [PubMed] [Google Scholar]
  26. Sharma S. D., Tsai V., Proffitt M. R. Enhancement of mouse natural killer cell activity by thyroxine. Cell Immunol. 1982 Oct;73(1):83–97. doi: 10.1016/0008-8749(82)90437-3. [DOI] [PubMed] [Google Scholar]
  27. Timonen T., Saksela E., Ranki A., Häyry P. Fractionation, morphological and functional characterization of effector cells responsible for human natural killer activity against cell-line targets. Cell Immunol. 1979 Nov;48(1):133–148. doi: 10.1016/0008-8749(79)90106-0. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES