Skip to main content
Immunology logoLink to Immunology
. 1983 Apr;48(4):799–808.

Monoclonal antibodies to influenza A virus FM1 (H1N1) proteins require individual conditions for optimal reactivity in binding assays.

K Kammer
PMCID: PMC1454057  PMID: 6187672

Abstract

The physical environments for optimal display of individual antigenic determinant sites on influenza A/FM/1/47 virus, with preference of its haemagglutinin, were established with monoclonal antibodies based on an enzyme-linked binding assay (ELISA). Comparisons were made with requirements of serum-derived antibodies to form immune complexes. Two-coating buffers revealed profound differences in their inherent capacities to provide antigenic reactivity; this activity became further altered when, after adsorption, the antigens were briefly exposed to either methanol or formaldehyde. Ionic strength started to become restrictive on formation of immune complexes above 0.2 M NaC1. The binding of the monoclonal antibodies to the haemagglutinin was charge-dependent. The form of its presentation, located on the viral surface or as an isolated component, further modified the pH-requirements for its optimal display in antigenic reactivity. The binding of serum-derived antibodies differed markedly and showed a dependence neither on the charge nor on the structural form of the haemagglutinin. Pretreatment of the haemagglutinin on the viral surface with small concentrations (0.025-0.05%) of Triton X-100, sodium dodecyl sulphate (SDS) and cetyltrimethyl ammonium bromide (CTAB), strongly changes the accessibility of its determinant sites, while deoxycholate (DOC) and octyl-beta-D-glucoside (OG) were not effective at the same concentrations. None of these detergents, however, altered the binding properties of the isolated component. Instead, some of them even improved its capacity to form immune complexes.

Full text

PDF
799

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmayer H. Selective solubilization of hemagglutinin and neuraminidase from influenza viruses. Intervirology. 1975;5(5):260–272. doi: 10.1159/000149923. [DOI] [PubMed] [Google Scholar]
  2. Bosch F. X., Mayer A., Huang R. T. Simple and rapid separation of ortho- and paramyxovirus glycoproteins. Med Microbiol Immunol. 1980;168(4):249–259. doi: 10.1007/BF02121808. [DOI] [PubMed] [Google Scholar]
  3. Breschkin A. M., Ahern J., White D. O. Antigenic determinants of influenza virus hemagglutinin. VIII. Topography of the antigenic regions of influenza virus hemagglutinin determined by competitive radioimmunoassay with monoclonal antibodies. Virology. 1981 Aug;113(1):130–140. doi: 10.1016/0042-6822(81)90142-2. [DOI] [PubMed] [Google Scholar]
  4. Cappel R., de Cuyper F., de Braekeleer J. Rapid detection of IgG and IgM antibodies for cytomegalovirus by the enzyme linked immunosorbent assay (ELISA). Arch Virol. 1978;58(3):253–258. doi: 10.1007/BF01317608. [DOI] [PubMed] [Google Scholar]
  5. Dean J., Schechter A. N. Conformation-specific antibodies to the alpha chain COOH terminus of hemoglobin A0. J Biol Chem. 1979 Sep 25;254(18):9185–9193. [PubMed] [Google Scholar]
  6. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972 Jul;109(1):129–135. [PubMed] [Google Scholar]
  7. Furie B., Furie B. C. Conformation-specific antibodies as probes of the gamma-carboxyglutamic acid-rich region of bovine prothrombin. Studies of metal-induced structural changes. J Biol Chem. 1979 Oct 10;254(19):9766–9771. [PubMed] [Google Scholar]
  8. Furie B., Schechter A. N., Sachs D. H., Anfinsen C. B. An immunological approach to the conformational equilibrium of staphylococcal nuclease. J Mol Biol. 1975 Mar 15;92(4):497–506. doi: 10.1016/0022-2836(75)90305-8. [DOI] [PubMed] [Google Scholar]
  9. Gerhard W. The analysis of the monoclonal immune response to influenza virus. II. The antigenicity of the viral hemagglutinin. J Exp Med. 1976 Oct 1;144(4):985–995. doi: 10.1084/jem.144.4.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerhard W., Webster R. G. Antigenic drift in influenza A viruses. I. Selection and characterization of antigenic variants of A/PR/8/34 (HON1) influenza virus with monoclonal antibodies. J Exp Med. 1978 Aug 1;148(2):383–392. doi: 10.1084/jem.148.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green N., Alexander H., Olson A., Alexander S., Shinnick T. M., Sutcliffe J. G., Lerner R. A. Immunogenic structure of the influenza virus hemagglutinin. Cell. 1982 Mar;28(3):477–487. doi: 10.1016/0092-8674(82)90202-1. [DOI] [PubMed] [Google Scholar]
  12. Kendal A. P., Phillips D. J., Webster R. G., Galland G. G., Reimer C. B. Effect of test system on the ability of monoclonal antibodies to detect antigenic drift in influenza A(H1N1) virus haemagglutinins. J Gen Virol. 1981 Jun;54(Pt 2):253–261. doi: 10.1099/0022-1317-54-2-253. [DOI] [PubMed] [Google Scholar]
  13. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  14. Laver W. G., Air G. M., Dopheide T. A., Ward C. W. Amino acid sequence changes in the haemagglutinin of A/Hong Kong (H3N2) influenza virus during the period 1968--77. Nature. 1980 Jan 31;283(5746):454–457. doi: 10.1038/283454a0. [DOI] [PubMed] [Google Scholar]
  15. Lehtonen O. P., Viljanen M. K. Antigen attachment in ELISA. J Immunol Methods. 1980;34(1):61–70. doi: 10.1016/0022-1759(80)90225-2. [DOI] [PubMed] [Google Scholar]
  16. Mosmann T. R., Gallatin M., Longenecker B. M. Alteration of apparent specificity of monoclonal (hybridoma) antibodies recognizing polymorphic histocompatibility and blood group determinants. J Immunol. 1980 Sep;125(3):1152–1156. [PubMed] [Google Scholar]
  17. Salonen E. M., Vaheri A. Immobilization of viral and mycoplasma antigens and of immunoglobulins on polystyrene surface for immunoassays. J Immunol Methods. 1979;30(3):209–218. doi: 10.1016/0022-1759(79)90095-4. [DOI] [PubMed] [Google Scholar]
  18. Schild G. C., Pereira H. G. Characterization of the ribonucleoprotein and neuraminidase of influenza A viruses by immunodiffusion. J Gen Virol. 1969 Apr;4(3):355–363. doi: 10.1099/0022-1317-4-3-355. [DOI] [PubMed] [Google Scholar]
  19. Virelizier J. L. Host defenses against influenza virus: the role of anti-hemagglutinin antibody. J Immunol. 1975 Aug;115(2):434–439. [PubMed] [Google Scholar]
  20. Webster R. G., Kendal A. P., Gerhard W. Analysis of antigenic drift in recently isolated influenza A (H1N1) viruses using monoclonal antibody preparations. Virology. 1979 Jul 15;96(1):258–264. doi: 10.1016/0042-6822(79)90189-2. [DOI] [PubMed] [Google Scholar]
  21. Webster R. G., Laver W. G. Determination of the number of nonoverlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance. Virology. 1980 Jul 15;104(1):139–148. doi: 10.1016/0042-6822(80)90372-4. [DOI] [PubMed] [Google Scholar]
  22. Webster R. G., Laver W. G. Studies on the origin of pandemic influenza. I. Antigenic analysis of A 2 influenza viruses isolated before and after the appearance of Hong Kong influenza using antisera to the isolated hemagglutinin subunits. Virology. 1972 May;48(2):433–444. doi: 10.1016/0042-6822(72)90054-2. [DOI] [PubMed] [Google Scholar]
  23. Wiktor T. J., Koprowski H. Monoclonal antibodies against rabies virus produced by somatic cell hybridization: detection of antigenic variants. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3938–3942. doi: 10.1073/pnas.75.8.3938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wiley D. C., Wilson I. A., Skehel J. J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981 Jan 29;289(5796):373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]
  25. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  26. Wrigley N. G., Laver W. G., Downie J. C. Binding of antibodies to isolated haemagglutinin and neuraminidase molecules of influenza virus observed in the electron microscope. J Mol Biol. 1977 Jan 25;109(3):405–421. doi: 10.1016/s0022-2836(77)80020-x. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES