Abstract
The interaction between the rat non-cytotoxic T lymphocyte subset, which is marked by the W3/25 monoclonal antibody, and natural killer cells was investigated. Specifically in vivo primed lymph node cells were restimulated in vitro with the priming antigen and co-cultured with a source of natural killer cells and their precursors. Cytotoxic activity, generated during a 4 day incubation period, was assessed by lysis of a rat natural killer cell-sensitive tumour target cell line, y3Ag123. This cytotoxic activity was more fully described as natural killer cell cytotoxicity on the basis of target cell specificity, using a range of natural killer cell-susceptible and -resistant targets. The W3/25-positive T cell, separated from the in vivo primed lymph node cells by nylon wool column elution, antibody labelling and sorting on the fluorescence-activated cell sorter, was shown to be necessary to stimulate the generation of this activity. W3/25-negative cells were not active in this respect. The activation was shown to be mediated via lymphokine(s), probably interleukin-2, present in concanavalin A-induced lymphocyte culture supernatants. These supernatants could be used to substitute for in vivo primed, restimulated W3/25-positive lymph node cells in activating natural killer cell cytotoxicity from normal spleen cells. Nylon wool column-eluted spleen cells, activated in vitro with conditioned medium were separated into OX8-positive and OX8-negative subsets using the fluorescence-activated cell sorter. The distribution of cytotoxic activity related to that of freshly derived rat natural killer cells.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhan A. K., Perry L. L., Cantor H., McCluskey R. T., Benacerraf B., Greene M. I. The role of T cell sets in the rejection of a methylcholanthrene-induced sarcoma (S1509a) in syngeneic mice. Am J Pathol. 1981 Jan;102(1):20–27. [PMC free article] [PubMed] [Google Scholar]
- Brooks C. G., Flannery G. R. Quantitative studies of natural immunity to solid tumours in rats. Persistence of natural immunity throughout reproductive life, and absence of suppressor cells in infant rats. Immunology. 1980 Feb;39(2):187–194. [PMC free article] [PubMed] [Google Scholar]
- Brooks C. G., Flannery G. R., Webb P. J., Baldwin R. W. Quantitative studies of natural immunity to solid tumours in rats. The nature of the killer cell depends on the type of assay. Immunology. 1980 Nov;41(3):673–680. [PMC free article] [PubMed] [Google Scholar]
- Brooks C. G., Urdal D. L., Henney C. S. Lymphokine-driven "differentiation" of cytotoxic T-cell clones into cells with NK-like specificity: correlations with display of membrane macromolecules. Immunol Rev. 1983;72:43–72. doi: 10.1111/j.1600-065x.1983.tb01072.x. [DOI] [PubMed] [Google Scholar]
- Cantrell D. A., Robins R. A., Baldwin R. W. A comparison of membrane markers on rat cytotoxic cells. Immunology. 1983 May;49(1):139–146. [PMC free article] [PubMed] [Google Scholar]
- Cantrell D. A., Robins R. A., Baldwin R. W. Rat lymphocyte subsets: cellular requirements for the generation of T-cell growth factor. Cell Immunol. 1982 Jul 1;70(2):367–372. doi: 10.1016/0008-8749(82)90338-0. [DOI] [PubMed] [Google Scholar]
- Domzig W., Stadler B. M., Herberman R. B. Interleukin 2 dependence of human natural killer (NK) cell activity. J Immunol. 1983 Apr;130(4):1970–1973. [PubMed] [Google Scholar]
- Farrar W. L., Johnson H. M., Farrar J. J. Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2. J Immunol. 1981 Mar;126(3):1120–1125. [PubMed] [Google Scholar]
- Fernandez-Cruz E., Gilman S. C., Feldman J. D. Immunotherapy of a chemically-induced sarcoma in rats: characterization of the effector T cell subset and nature of suppression. J Immunol. 1982 Mar;128(3):1112–1117. [PubMed] [Google Scholar]
- Fernandez-Cruz E., Woda B. A., Feldman J. D. Elimination of syngeneic sarcomas in rats by a subset of T lymphocytes. J Exp Med. 1980 Oct 1;152(4):823–841. doi: 10.1084/jem.152.4.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flannery G. R., Robins R. A., Baldwin R. W. Natural killer cells infiltrate transplanted chemically induced sarcomas. Cell Immunol. 1981 Jun;61(1):1–10. doi: 10.1016/0008-8749(81)90348-8. [DOI] [PubMed] [Google Scholar]
- Gillis S. Interleukin 2: biology and biochemistry. J Clin Immunol. 1983 Jan;3(1):1–13. doi: 10.1007/BF00919133. [DOI] [PubMed] [Google Scholar]
- Gray J. D., Brooks C. G., Baldwin R. W. Detection of either rapidly cytolytic macrophages or NK cells in "activated" peritoneal exudates depends on the method of analysis and the target cell type. Immunology. 1981 Apr;42(4):561–568. [PMC free article] [PubMed] [Google Scholar]
- Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimm E. A., Ramsey K. M., Mazumder A., Wilson D. J., Djeu J. Y., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. II. Precursor phenotype is serologically distinct from peripheral T lymphocytes, memory cytotoxic thymus-derived lymphocytes, and natural killer cells. J Exp Med. 1983 Mar 1;157(3):884–897. doi: 10.1084/jem.157.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hefeneider S. H., Conlon P. J., Henney C. S., Gillis S. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cells. J Immunol. 1983 Jan;130(1):222–227. [PubMed] [Google Scholar]
- Interferon nomenclature. J Immunol. 1980 Nov;125(5):2353–2353. [PubMed] [Google Scholar]
- Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
- Kuribayashi K., Gillis S., Kern D. E., Henney C. S. Murine NK cell cultures: effects of interleukin-2 and interferon on cell growth and cytotoxic reactivity. J Immunol. 1981 Jun;126(6):2321–2327. [PubMed] [Google Scholar]
- Loop S. M., Bernstein I. D., Wright P. W. T cell synergy in the rat: serologic characterization of T cell subsets. J Immunol. 1980 Sep;125(3):1237–1239. [PubMed] [Google Scholar]
- Loveland B. E., McKenzie I. F. Delayed-type hypersensitivity and allograft rejection in the mouse: correlation of effector cell phenotype. Immunology. 1982 Jun;46(2):313–320. [PMC free article] [PubMed] [Google Scholar]
- Loveland B. E., McKenzie I. F. Which T cells cause graft rejection? Transplantation. 1982 Mar;33(3):217–221. doi: 10.1097/00007890-198203000-00001. [DOI] [PubMed] [Google Scholar]
- O'Malley J. A., Nussbaum-Blumenson A., Sheedy D., Grossmayer B. J., Ozer H. Identification of the T cell subset that produces human gamma interferon. J Immunol. 1982 Jun;128(6):2522–2526. [PubMed] [Google Scholar]
- Robins R. A., Baldwin R. W. Role of T-lymphocyte subsets in tumor rejection: implications for developing biological response modifiers and monitoring tumor--host interactions during tumor development. J Biol Response Mod. 1983;2(2):101–109. [PubMed] [Google Scholar]
- Roder J. C., Lohmann-Matthes M. L., Domzig W., Kiessling R., Haller O. A functional comparison of tumor cell killing by activated macrophages and natural killer cells. Eur J Immunol. 1979 Apr;9(4):283–288. doi: 10.1002/eji.1830090407. [DOI] [PubMed] [Google Scholar]
- Saxena R. K., Adler W. H., Nordin A. A. Modulation of natural cytotoxicity by alloantibodies. IV. A comparative study of the activation of mouse spleen cell cytotoxicity by anti H-2 antisera, interferon, and mitogens. Cell Immunol. 1981 Sep 1;63(1):28–41. doi: 10.1016/0008-8749(81)90026-5. [DOI] [PubMed] [Google Scholar]
- Wheelock E. F. Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science. 1965 Jul 16;149(3681):310–311. doi: 10.1126/science.149.3681.310. [DOI] [PubMed] [Google Scholar]
- White R. A., Mason D. W., Williams A. F., Galfre G., Milstein C. T-lymphocyte heterogeneity in the rat: separation of functional subpopulations using a monoclonal antibody. J Exp Med. 1978 Sep 1;148(3):664–673. doi: 10.1084/jem.148.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
