Abstract
In the T suppressor circuit which affects contact sensitivity, the T acceptor cell (Tacc) armed with T suppressor factor (TsF) and then triggered by antigen and major histocompatibility complex products (I-J) releases non-specific inhibitor (nsINH). These non-specific inhibitor(s) affect both the efferent and afferent stage of the contact sensitivity reaction and were originally detected by the inhibition of the passive transfer of contact sensitivity. The nsINH also blocks the induction of contact sensitivity when given intravenously at the time of immunization but has no effect when given at the time of challenge. Similarly, it blocks proliferation in the regional lymph nodes induced by contact sensitizer in a dose-dependent fashion; it acts when given at the time of immunization but not 1 day later. This effect is antigen non-specific and H-2 unrestricted. The nsINH bears I-J determinants as shown by affinity chromatography on monoclonal antibody. The nsINH comes from the Tacc and is not a breakdown product of the TsF. This is shown by the fact that, when the Tacc and TsF have I-J of different genotypes, the genotype of the nsINH corresponds to that of the Tacc. Parallel measurements of inhibition of lymphoproliferation and of passive transfer show that the nsINH has a molecular weight of 50-60 Kd and a pI around 6.8 and suggest that similar or identical molecules block both the afferent and efferent stage of the contact sensitivity reaction.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman A., Katz D. H. Production and isolation of helper and suppressor factors. J Immunol Methods. 1980;38(1-2):9–41. doi: 10.1016/0022-1759(80)90328-2. [DOI] [PubMed] [Google Scholar]
- Asherson G. L., Wood P. J., Mayhew B. Control of the immune response. I. Depression of DNA synthesis by immune lymph node cells. Immunology. 1975 Dec;29(6):1057–1065. [PMC free article] [PubMed] [Google Scholar]
- Asherson G. L., Zembala M. The role of the T acceptor cell in suppressor systems. Antigen-specific T suppressor factor acts via a T acceptor cell; this releases a nonspecific inhibitor of the transfer of contact sensitivity when exposed to antigen in the context of I-J. Ann N Y Acad Sci. 1982;392:71–89. doi: 10.1111/j.1749-6632.1982.tb36099.x. [DOI] [PubMed] [Google Scholar]
- Colizzi V., Asherson G. L., James B. M. The role of I-J in the suppressor T-cell circuit which influences the effector stage of contact sensitivity: antigen together with syngeneic I-J region determinants induces and activates T suppressor cells. Immunology. 1983 May;49(1):191–199. [PMC free article] [PubMed] [Google Scholar]
- Delovitch T. L., Watson J., Battistella R., Harris J. F., Shaw J., Paetkau V. In vitro analysis of allogeneic lymphocyte interaction. V. Identification and characterization of two components of allogeneic effect factor, one of which displays H-2-restricted helper activity and the other, T cell-growth factor activity. J Exp Med. 1981 Jan 1;153(1):107–128. doi: 10.1084/jem.153.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fresno M., McVay-Boudreau L., Cantor H. Antigen-specific T lymphocyte clones. III. Papain splits purified T suppressor molecules into two functional domains. J Exp Med. 1982 Apr 1;155(4):981–993. doi: 10.1084/jem.155.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes C. E., Klyczek K. K., Krum D. P., Whitcomb R. M., Hullett D. A., Cantor H. Chromosome 4 Jt gene controls murine T cell surface I-J expression. Science. 1984 Feb 10;223(4636):559–563. doi: 10.1126/science.6607530. [DOI] [PubMed] [Google Scholar]
- Hiramatsu K., Ochi A., Miyatani S., Segawa A., Tada T. Monoclonal antibodies against unique I-region gene products expressed only on mature functional T cells. Nature. 1982 Apr 15;296(5858):666–668. doi: 10.1038/296666a0. [DOI] [PubMed] [Google Scholar]
- Hirata F., Iwata M. Role of lipomodulin, a phospholipase inhibitory protein, in immunoregulation by thymocytes. J Immunol. 1983 Apr;130(4):1930–1936. [PubMed] [Google Scholar]
- Kanno M., Kobayashi S., Tokuhisa T., Takei I., Shinohara N., Taniguchi M. Monoclonal antibodies that recognize the product controlled by a gene in the I-J subregion of the mouse H-2 complex. J Exp Med. 1981 Nov 1;154(5):1290–1304. doi: 10.1084/jem.154.5.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malkovsky M., Asherson G. L., Stockinger B., Watkins M. C. Nonspecific inhibitor released by T acceptor cells reduces the production of interleukin-2. Nature. 1982 Dec 16;300(5893):652–655. doi: 10.1038/300652a0. [DOI] [PubMed] [Google Scholar]
- Malkovský M., Asherson G. L., Chandler P., Colizzi V., Watkins M. C., Zembala M. Nonspecific inhibitor of DNA synthesis elaborated by T acceptor cells. I. Specific hapten- and I-J-driven liberation of an inhibitor of cell proliferation by Lyt-1-2+ cyclophosphamide-sensitive T acceptor cells armed with a product of Lyt-1+2+-specific suppressor cells. J Immunol. 1983 Feb;130(2):785–790. [PubMed] [Google Scholar]
- Miller S. D., Butler L. D., Claman H. N. Suppressor T cell circuits in contact sensitivity. I. Two mechanistically distinct waves of suppressor T cells occur in mice tolerized with syngeneic DNP-modified lymphoid cells. J Immunol. 1982 Aug;129(2):461–468. [PubMed] [Google Scholar]
- Miller S. D., Sy M. S., Claman H. N. Suppressor T cell mechanisms in contact sensitivity. I. Efferent blockade by syninduced suppressor T cells. J Immunol. 1978 Jul;121(1):265–273. [PubMed] [Google Scholar]
- Okuda K., Minami M., Furusawa M., Dorf M. E. Analysis of T cell hybridomas. II. Comparisons among three distinct types of monoclonal suppressor factors. J Exp Med. 1981 Dec 1;154(6):1838–1851. doi: 10.1084/jem.154.6.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swierkosz J. E., Marrack P., Kappler J. W. Functional analysis of T cells expressing Ia antigens. I. Demonstration of helper T-cell heterogeneity. J Exp Med. 1979 Dec 1;150(6):1293–1309. doi: 10.1084/jem.150.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sy M. S., Miller S. D., Moorhead J. W., Claman H. N. Active suppression of 1-fluoro-2,4-dinitrobenzene-immune T cells. Requirement of an auxiliary T cell induced by antigen. J Exp Med. 1979 May 1;149(5):1197–1207. doi: 10.1084/jem.149.5.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takaoki M., Sy M. S., Tominaga A., Lowy A., Tsurufuji M., Finberg R., Benacerraf B., Greene M. I. I-J-restricted interactions in the generation of azobenzenearsonate-specific suppressor T cells. J Exp Med. 1982 Nov 1;156(5):1325–1334. doi: 10.1084/jem.156.5.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taniguchi M., Takei I., Saito T., Igarashi M., Kurihara K., Tomioka H. Antigen-specific and nonspecific suppressor factors derived from T cell hybridomas: their function and molecular organization. Int Arch Allergy Appl Immunol. 1981;66 (Suppl 1):204–211. doi: 10.1159/000232904. [DOI] [PubMed] [Google Scholar]
- Weinberger J. Z., Germain R. N., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. V. Role of idiotypes in the suppressor pathway. J Exp Med. 1980 Jul 1;152(1):161–169. doi: 10.1084/jem.152.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zembala M. A., Asherson G. L., James B. M., Stein V. E., Watkins M. C. Anti-haptene T suppressor factor acts through an I-J+, Ly1-2+, T acceptor cell that releases a nonspecific inhibitor of the transfer of contact sensitivity when exposed to antigen. J Immunol. 1982 Nov;129(5):1823–1829. [PubMed] [Google Scholar]
- Zembala M., Asherson G. L., Colizzi V. Hapten-specific T suppressor factor recognizes both hapten and I-J region products on haptenized spleen cells. Nature. 1982 Jun 3;297(5865):411–413. doi: 10.1038/297411a0. [DOI] [PubMed] [Google Scholar]
