Abstract
The metabolic consequences of non-lethal complement-membrane attack in neutrophils have been investigated by the measurement of cellular ATP content and functional parameters, including chemotactic and phagocytic responses and the capacity to secrete reactive oxygen metabolites, in cells before and after attack. Immediately after non-lethal complement attack, cellular ATP content was reduced by more than 75%, although lactate dehydrogenase content was unaltered. Energy-requiring cell functions were similarly depressed. Incubation of cells in nutrient medium rapidly restored cell-energy stores and functions, demonstrating the completeness of recovery. Fluorescence-activated cell-sorter studies demonstrated that cells undergoing non-lethal complement attack underwent a reversible cell swelling, the cell diameter rapidly increasing from an average of 8.5 micron to 12 micron, then gradually shrinking back to a final average diameter of 8.2 micron. The results indicate that although non-lethal complement-membrane attack causes both metabolic and physical changes in neutrophils, these effects are transient and full functional recovery occurs.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beverley P. C., Linch D., Delia D. Isolation of human haematopoietic progenitor cells using monoclonal antibodies. Nature. 1980 Sep 25;287(5780):332–333. doi: 10.1038/287332a0. [DOI] [PubMed] [Google Scholar]
- Borle A. B., Snowdowne K. W. Measurement of intracellular free calcium in monkey kidney cells with aequorin. Science. 1982 Jul 16;217(4556):252–254. doi: 10.1126/science.6806904. [DOI] [PubMed] [Google Scholar]
- Boyle M. D., Ohanian S. H., Borsos T. Studies on the terminal stages of antibody-complement-mediated killing of a tumor cell. II. Inhibition of transformation of T to dead cells by 3'5' cAMP. J Immunol. 1976 May;116(5):1276–1279. [PubMed] [Google Scholar]
- Campbell A. K., Hallett M. B. Measurement of intracellular calcium ions and oxygen radicals in polymorphonuclear leucocyte-erythrocyte 'ghost' hybrids. J Physiol. 1983 May;338:537–550. doi: 10.1113/jphysiol.1983.sp014688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell A. K., Morgan B. P. Monoclonal antibodies demonstrate protection of polymorphonuclear leukocytes against complement attack. Nature. 1985 Sep 12;317(6033):164–166. doi: 10.1038/317164a0. [DOI] [PubMed] [Google Scholar]
- Carney D. F., Koski C. L., Shin M. L. Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9. J Immunol. 1985 Mar;134(3):1804–1809. [PubMed] [Google Scholar]
- DeLuca M., McElroy W. D. Kinetics of the firefly luciferase catalyzed reactions. Biochemistry. 1974 Feb 26;13(5):921–925. doi: 10.1021/bi00702a015. [DOI] [PubMed] [Google Scholar]
- Dormer R. L. Direct demonstration of increases in cytosolic free Ca2+ during stimulation of pancreatic enzyme secretion. Biosci Rep. 1983 Mar;3(3):233–240. doi: 10.1007/BF01122455. [DOI] [PubMed] [Google Scholar]
- Edwards S. W., Morgan B. P., Hoy T. G., Luzio J. P., Campbell A. K. Complement-mediated lysis of pigeon erythrocyte ghosts analysed by flow cytometry. Evidence for the involvement of a 'threshold' phenomenon. Biochem J. 1983 Oct 15;216(1):195–202. doi: 10.1042/bj2160195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN H., BARROW P., GOLDBERG B. Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J Exp Med. 1959 Nov 1;110:699–713. doi: 10.1084/jem.110.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grisham M. B., Engerson T. D., McCord J. M., Jones H. P. A comparative study of neutrophil purification and function. J Immunol Methods. 1985 Oct 10;82(2):315–320. doi: 10.1016/0022-1759(85)90363-1. [DOI] [PubMed] [Google Scholar]
- Jackson M. B., Stephens C. L., Lecar H. Single channel currents induced by complement in antibody-coated cell membranes. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6421–6425. doi: 10.1073/pnas.78.10.6421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koski C. L., Ramm L. E., Hammer C. H., Mayer M. M., Shin M. L. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3816–3820. doi: 10.1073/pnas.80.12.3816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan B. P., Campbell A. K. The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J. 1985 Oct 1;231(1):205–208. doi: 10.1042/bj2310205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan B. P., Dankert J. R., Esser A. F. Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol. 1987 Jan 1;138(1):246–253. [PubMed] [Google Scholar]
- Morgan B. P., Daw R. A., Siddle K., Luzio J. P., Campbell A. K. Immunoaffinity purification of human complement component C9 using monoclonal antibodies. J Immunol Methods. 1983 Nov 25;64(3):269–281. doi: 10.1016/0022-1759(83)90434-9. [DOI] [PubMed] [Google Scholar]
- Morgan B. P., Luzio J. P., Campbell A. K. Intracellular Ca2+ and cell injury: a paradoxical role of Ca2+ in complement membrane attack. Cell Calcium. 1986 Dec;7(5-6):399–411. doi: 10.1016/0143-4160(86)90042-4. [DOI] [PubMed] [Google Scholar]
- Morgan B. P., Sewry C. A., Siddle K., Luzio J. P., Campbell A. K. Immunolocalization of complement component C9 on necrotic and non-necrotic muscle fibres in myositis using monoclonal antibodies: a primary role of complement in autoimmune cell damage. Immunology. 1984 May;52(1):181–188. [PMC free article] [PubMed] [Google Scholar]
- Ohanian S. H., Schlager S. I. Humoral immune killing of nucleated cells: mechanisms of complement-mediated attack and target cell defense. Crit Rev Immunol. 1981 Jan;1(3):165–209. [PubMed] [Google Scholar]
- Patel A. K., Campbell A. K. The membrane attack complex of complement induces permeability changes via thresholds in individual cells. Immunology. 1987 Jan;60(1):135–140. [PMC free article] [PubMed] [Google Scholar]
- Ramm L. E., Whitlow M. B., Koski C. L., Shin M. L., Mayer M. M. Elimination of complement channels from the plasma membranes of U937, a nucleated mammalian cell line: temperature dependence of the elimination rate. J Immunol. 1983 Sep;131(3):1411–1415. [PubMed] [Google Scholar]
- SPIEGELBERG H. L., WEIGLE W. O. THE CATABOLISM OF HOMOLOGOUS AND HETEROLOGOUS 7S GAMMA GLOBULIN FRAGMENTS. J Exp Med. 1965 Mar 1;121:323–338. doi: 10.1084/jem.121.3.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sims P. J., Wiedmer T. Repolarization of the membrane potential of blood platelets after complement damage: evidence for a Ca++ -dependent exocytotic elimination of C5b-9 pores. Blood. 1986 Aug;68(2):556–561. [PubMed] [Google Scholar]
- Stephens C. L. Complement-induced entry o f membrane-impermeable material into living tumor cells: possibilities for chemotherapy. Clin Immunol Immunopathol. 1981 Feb;18(2):254–260. doi: 10.1016/0090-1229(81)90031-3. [DOI] [PubMed] [Google Scholar]
- Tirosh R., Degani H., Berke G. Prelytic reduction of high-energy phosphates induced by antibody and complement in nucleated cells. 31P-NMR study. Complement. 1984;1(4):207–212. doi: 10.1159/000467839. [DOI] [PubMed] [Google Scholar]
- Ward P. A., Zvaifler N. J. Quantitative phagocytosis by neutrophils. II. Release of the C5-cleaving enzyme and inhibition of phagocytosis by rheumatoid factor. J Immunol. 1973 Dec;111(6):1777–1782. [PubMed] [Google Scholar]
- Wiedmer T., Esmon C. T., Sims P. J. On the mechanism by which complement proteins C5b-9 increase platelet prothrombinase activity. J Biol Chem. 1986 Nov 5;261(31):14587–14592. [PubMed] [Google Scholar]
