Skip to main content
Immunology logoLink to Immunology
. 1984 Dec;53(4):731–743.

Recognition specificities, development and possible biological function of natural killer cells in the mouse. II. Changes in NK recognition during ontogeny and ageing, and examination of role of environment in controlling the expressed recognition repertoire.

R M Gorczynski, J F Harris, M Kennedy, S MacRae, M P Chang
PMCID: PMC1454893  PMID: 6149997

Abstract

We have used a spleen fragment assay to assess subpopulations of NK effector cells in individual mice and to analyse the patterns of inhibition of lytic activity seen in the presence of different sugars (mono-, di- and tri-saccharides). Our data suggest that during ontogeny the heterogeneity (diversity) of the NK effector population increases in a fashion which is somewhat characteristic of the individual strain under investigation. Furthermore, when a similar analysis was performed on NK cells in the spleen of lethally irradiated recipient mice receiving syngeneic or semi-allogeneic bone marrow stem cell precursors, we found that the phenotype of inhibition by different sugars was a characteristic of the bone marrow donor and not of the recipient. In so far as the assay described assesses target recognition by NK cells (and not subsequent parameters involved in the lytic event) these data can be interpreted in terms of a relative independence of the expressed recognition repertoire of NK cells from the environment in which their differentiation occurs.

Full text

PDF
731

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo T., Balch C. M. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol. 1981 Sep;127(3):1024–1029. [PubMed] [Google Scholar]
  2. Abo T., Balch C. M. Characterization of HNK-1+ (Leu-7) human lymphocytes. II. Distinguishing phenotypic and functional properties of natural killer cells from activated NK-like cells. J Immunol. 1982 Oct;129(4):1758–1761. [PubMed] [Google Scholar]
  3. Antonelli P., Stewart W., 2nd, Dupont B. Distribution of natural killer cell activity in peripheral blood, cord blood, thymus, lymph nodes, and spleen and the effect of in vitro treatment with interferon preparation. Clin Immunol Immunopathol. 1981 May;19(2):161–169. doi: 10.1016/0090-1229(81)90059-3. [DOI] [PubMed] [Google Scholar]
  4. Bar-Shavit Z., Ofek I., Goldman R., Mirelman D., Sharon N. Mannose residues on phagocytes as receptors for the attachment of Escherichia coli and Salmonella typhi. Biochem Biophys Res Commun. 1977 Sep 9;78(1):455–460. doi: 10.1016/0006-291x(77)91276-1. [DOI] [PubMed] [Google Scholar]
  5. Bevan M. J., Fink P. J. The influence of thymus H-2 antigens on the specificity of maturing killer and helper cells. Immunol Rev. 1978;42:3–19. doi: 10.1111/j.1600-065x.1978.tb00256.x. [DOI] [PubMed] [Google Scholar]
  6. Brunda M. J., Wiltrout R. H., Holden H. T., Varesio L. Selective inhibition by monosaccharides of tumor cell cytotoxicity mediated by mouse macrophages, macrophage-like cell lines, and natural killer cells. Int J Cancer. 1983 Mar 15;31(3):373–379. doi: 10.1002/ijc.2910310319. [DOI] [PubMed] [Google Scholar]
  7. Fitzgerald P. A., Evans R., Kirkpatrick D., Lopez C. Heterogeneity of human NK cells: comparison of effectors that lyse HSV-1-infected fibroblasts and K562 erythroleukemia targets. J Immunol. 1983 Apr;130(4):1663–1667. [PubMed] [Google Scholar]
  8. Forbes J. T., Bretthauer R. K., Oeltmann T. N. Mannose 6-, fructose 1-, and fructose 6-phosphates inhibit human natural cell-mediated cytotoxicity. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5797–5801. doi: 10.1073/pnas.78.9.5797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gooi H. C., Feizi T., Kapadia A., Knowles B. B., Solter D., Evans M. J. Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature. 1981 Jul 9;292(5819):156–158. doi: 10.1038/292156a0. [DOI] [PubMed] [Google Scholar]
  10. Gorczynski R. M., Benzing K., Krogsrud R., MacRae S., Price G. B. Alteration of allospecific t-cell receptors after differentiation from prethymic precursor cells in semiallogeneic environments. Cell Immunol. 1981 Aug;62(2):350–366. doi: 10.1016/0008-8749(81)90336-1. [DOI] [PubMed] [Google Scholar]
  11. Gorczynski R. M., Kennedy M., Chang M. P., MacRae S. Recognition specificities, development, and possible biological function of natural killer cells in the mouse. I. Spleen focus forming assay for natural killer activity and analysis of lectin-like recognition structures on the surface of murine natural killer cells. Cell Immunol. 1983 Sep;80(2):335–348. doi: 10.1016/0008-8749(83)90122-3. [DOI] [PubMed] [Google Scholar]
  12. Gorczynski R. M., Kennedy M., MacRae S. Ontogeny of diversity in the receptor repertoire of murine cytotoxic lymphocytes. I. Comparison of recognition patterns of activated T cells of B10.D2 and B10.BR mice of different ages and analysis of changes in F1 hybrid and bone marrow radiation chimeras. Cell Immunol. 1982 Oct;73(1):44–58. doi: 10.1016/0008-8749(82)90434-8. [DOI] [PubMed] [Google Scholar]
  13. Grabel L. B., Rosen S. D., Martin G. R. Teratocarcinoma stem cells have a cell surface carbohydrate-binding component implicated in cell-cell adhesion. Cell. 1979 Jul;17(3):477–484. doi: 10.1016/0092-8674(79)90255-1. [DOI] [PubMed] [Google Scholar]
  14. Knowles B. B., Rappaport J., Solter D. Murine embryonic antigen (SSEA-1) is expressed on human cells and structurally related human blood group antigen I is expressed on mouse embryos. Dev Biol. 1982 Sep;93(1):54–58. doi: 10.1016/0012-1606(82)90238-x. [DOI] [PubMed] [Google Scholar]
  15. Miller R. G., Gorczynski R. M., Lafleur L., MacDonald H. R., Phillips R. A. Cell separation analysis of B and T lymphocyte differentiation. Transplant Rev. 1975;25:59–97. doi: 10.1111/j.1600-065x.1975.tb00726.x. [DOI] [PubMed] [Google Scholar]
  16. Muramatsu T., Gachelin G., Damonneville M., Delarbre C., Jacob F. Cell surface carbohydrates of embryonal carcinoma cells: polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA. Cell. 1979 Sep;18(1):183–191. doi: 10.1016/0092-8674(79)90367-2. [DOI] [PubMed] [Google Scholar]
  17. Roder J. C., Ahrlund-Richter L., Jondal M. Target-effector interaction in the human and murine natural killer system: specificity and xenogeneic reactivity of the solubilized natural killer-target structure complex and its loss in a somatic cell hybrid. J Exp Med. 1979 Sep 19;150(3):471–481. doi: 10.1084/jem.150.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roder J. C., Kiessling R., Biberfeld P., Andersson B. Target-effector interaction in the natural killer (NK) cell system. II. The isolation of NK cells and studies on the mechanism of killing. J Immunol. 1978 Dec;121(6):2509–2517. [PubMed] [Google Scholar]
  19. Roder J. C., Kiessling R. Target--effector interaction in the natural killer cell system. I. Covariance and genetic control of cytolytic and target-cell-binding subpopulations in the mouse. Scand J Immunol. 1978;8(2):135–144. doi: 10.1111/j.1365-3083.1978.tb00505.x. [DOI] [PubMed] [Google Scholar]
  20. Roder J. C., Rosén A., Fenyö E. M., Troy F. A. Target-effector interaction in the natural killer cell system: isolation of target structures. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1405–1409. doi: 10.1073/pnas.76.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sherman L. A. Genetic and regulatory contributions of the major histocompatibility complex to the developing cytolytic T lymphocyte repertoire. J Immunol. 1982 Apr;128(4):1849–1853. [PubMed] [Google Scholar]
  22. Stutman O., Dien P., Wisun R. E., Lattime E. C. Natural cytotoxic cells against solid tumors in mice: blocking of cytotoxicity by D-mannose. Proc Natl Acad Sci U S A. 1980 May;77(5):2895–2898. doi: 10.1073/pnas.77.5.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Timonen T., Ortaldo J. R., Herberman R. B. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 1981 Mar 1;153(3):569–582. doi: 10.1084/jem.153.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vose B. M., Harding M., White W., Moore M., Gallagher J. Effect of simple sugars on natural killing: evidence against the involvement of a lectin like mechanism in target recognition. Clin Exp Immunol. 1983 Mar;51(3):517–524. [PMC free article] [PubMed] [Google Scholar]
  25. Winnik F. M., Brisson J. R., Carver J. P., Krepinsky J. J. Syntheses of model oligosaccharides of biological significance. Synthesis of methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-d-mannopyranoside and the corresponding mannobiosides. Carbohydr Res. 1982 May 1;103(1):15–28. doi: 10.1016/s0008-6215(82)80004-9. [DOI] [PubMed] [Google Scholar]
  26. Wright S. C., Bonavida B. Selective lysis of NK-sensitive target cells by a soluble mediator released from murine spleen cells and human peripheral blood lymphocytes. J Immunol. 1981 Apr;126(4):1516–1521. [PubMed] [Google Scholar]
  27. Wright S. C., Weitzen M. L., Kahle R., Granger G. A., Bonavida B. Studies on the mechanism of natural killer cytotoxicity. II. coculture of human PBL with NK-sensitive or resistant cell lines stimulates release of natural killer cytotoxic factors (NKCF) selectively cytotoxic to NK-sensitive target cells. J Immunol. 1983 May;130(5):2479–2483. [PubMed] [Google Scholar]
  28. Young W. W., Jr, Durdik J. M., Urdal D., Hakomori S., Henney C. S. Glycolipid expression in lymphoma cell variants: chemical quantity, immunologic reactivity, and correlations with susceptibility to NK cells. J Immunol. 1981 Jan;126(1):1–6. [PubMed] [Google Scholar]
  29. Zarling J. M., Clouse K. A., Biddison W. E., Kung P. C. Phenotypes of human natural killer cell populations detected with monoclonal antibodies. J Immunol. 1981 Dec;127(6):2575–2580. [PubMed] [Google Scholar]
  30. Zarling J. M., Kung P. C. Monoclonal antibodies which distinguish between human NK cells and cytotoxic T lymphocytes. Nature. 1980 Nov 27;288(5789):394–396. doi: 10.1038/288394a0. [DOI] [PubMed] [Google Scholar]
  31. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Klein P. A., Klein J. On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition? J Exp Med. 1978 Mar 1;147(3):882–896. doi: 10.1084/jem.147.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES