Skip to main content
Immunology logoLink to Immunology
. 1984 Dec;53(4):847–854.

Induction of tolerance by haptenated liposomes carrying mouse erythrocyte membrane glycoprotein.

Y Hitsumoto, T Hineno, S Utsumi
PMCID: PMC1454896  PMID: 6209210

Abstract

Membrane sialoglycoprotein (GP) of mouse erythrocytes were incorporated into artificial membranes of liposomes which also contained DNP-aminocaproylphosphatidylethanolamine hapten. The liposomes were tested for their potential to modulate the anti-hapten antibody response in mice as a plausible model of haptenated isologous erythrocytes which is known to be a potent tolerogen. Repeated intravenous inoculation with DNP-liposomes carrying mouse GP resulted in a significant suppression of splenic plaque-forming cells and serum antibody produced in the recipient mice against the subsequent immunization with DNP-KLH in saline or DNP-HGG in Freund's complete adjuvant, in a strictly hapten-specific fashion. The suppression was long-lasting, and the secondary response to DNP-KLH given over a month later was also affected. DNP-liposomes without GP, or those with rabbit GP, exhibited little or no suppressive effect. The observed capacity of mouse GP-bearing DNP-liposomes was reminiscent of that of haptenated mouse erythrocytes in that only the IgG response, but not the IgM response, was suppressed.

Full text

PDF
847

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battisto J. R., Bloom B. R. Dual immunological unresponsiveness induced by cell membrane coupled hapten or antigen. Nature. 1966 Oct 8;212(5058):156–157. doi: 10.1038/212156a0. [DOI] [PubMed] [Google Scholar]
  2. Borel Y. Isologous IgG-induced immunologic tolerance to haptens: a model of self versus non-self recognition. Transplant Rev. 1976;31:3–22. doi: 10.1111/j.1600-065x.1976.tb01450.x. [DOI] [PubMed] [Google Scholar]
  3. Claman H. N., Miller S. D. Requirements for induction of T cell tolerance to DNFB: efficiency of membrane-associated DNFB. J Immunol. 1976 Aug;117(2):480–485. [PubMed] [Google Scholar]
  4. Davie J. M., Paul W. E., Katz D. H., Benacerraf B. Hapten-specific tolerance. Preferential depression of the high affinity antibody response. J Exp Med. 1972 Sep 1;136(3):426–438. doi: 10.1084/jem.136.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Desaymard C., Feldmann M. Role of epitope density in the induction of immunity and tolerance with thymus-independent antigens. I. Studies with 2,4-dinitrophenyl conjugates in vitro. Eur J Immunol. 1975 Aug;5(8):537–541. doi: 10.1002/eji.1830050806. [DOI] [PubMed] [Google Scholar]
  6. Dintzis R. Z., Middleton M. H., Dintzis H. M. Studies on the immunogenicity and tolerogenicity of T-independent antigens. J Immunol. 1983 Nov;131(5):2196–2203. [PubMed] [Google Scholar]
  7. Golan D. T., Borel Y. Nonantigenicity and immunologic tolerance: the role of the carrier in the induction of tolerance to the hapten. J Exp Med. 1971 Oct 1;134(4):1046–1061. doi: 10.1084/jem.134.4.1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamilton J. A., Miller J. F. Hapten-specific tolerance: unresponsiveness in the T cell-depleted population. Eur J Immunol. 1973 Jul;3(7):457–460. doi: 10.1002/eji.1830030716. [DOI] [PubMed] [Google Scholar]
  9. Hamilton J. A., Miller J. F., Kettman J. Hapten-specific tolerance in mice. II. Adoptive transfer studies and evidence for unresponsiveness in the B cells. Eur J Immunol. 1974 Apr;4(4):268–276. doi: 10.1002/eji.1830040408. [DOI] [PubMed] [Google Scholar]
  10. Havas H. F. The effect of the carrier protein on the immune response and on the induction of tolerance in mice to the 2,4-dinitrophenyl determinant. Immunology. 1969 Dec;17(6):819–829. [PMC free article] [PubMed] [Google Scholar]
  11. Humphrey J. H. Tolerogenic or immunogenic activity of hapten-conjugated polysaccharides correlated with cellular localization. Eur J Immunol. 1981 Mar;11(3):212–220. doi: 10.1002/eji.1830110310. [DOI] [PubMed] [Google Scholar]
  12. Ishizaka K., Adachi T. Generation of specific helper cells and suppressor cells in vitro for the IgE and IgG antibody responses. J Immunol. 1976 Jul;117(1):40–47. [PubMed] [Google Scholar]
  13. Klaus G. G., Humphrey J. H. B cell tolerance induced by polymeric antigens. I. Comparison of the dose and epitope density requirements for inactivation of primed and unprimed B cells in vivo. Eur J Immunol. 1976 Jun;5(6):361–365. doi: 10.1002/eji.1830050602. [DOI] [PubMed] [Google Scholar]
  14. Kontiainen S., Feldmann M. Suppressor cell induction in vitro. I. Kinetics of induction of antigen-specific suppressor cells. Eur J Immunol. 1976 Apr;6(4):296–301. doi: 10.1002/eji.1830060412. [DOI] [PubMed] [Google Scholar]
  15. Koskimies S., Mäkelä O. T-cell-deficient mice produce more antihapten antibodies against syngeneic than against allogeneic erythrocyte conjugates. J Exp Med. 1976 Aug 1;144(2):467–475. doi: 10.1084/jem.144.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Litman B. J. Determination of molecular asymmetry in the phosphatidylethanolamine surface distribution in mixed phospholipid vesicles. Biochemistry. 1974 Jul 2;13(14):2844–2848. doi: 10.1021/bi00711a010. [DOI] [PubMed] [Google Scholar]
  18. Marchesi V. T., Andrews E. P. Glycoproteins: isolation from cellmembranes with lithium diiodosalicylate. Science. 1971 Dec 17;174(4015):1247–1248. doi: 10.1126/science.174.4015.1247. [DOI] [PubMed] [Google Scholar]
  19. Moody C. E., Innes J. B., Siskind G. W., Weksler M. E. Tolerance induced by TNP-derivatized syngeneic erythrocytes: evidence for cooperation between hapten-specific T and hapten-specific B lymphocytes in the immune response. J Immunol. 1978 Mar;120(3):844–849. [PubMed] [Google Scholar]
  20. Naor D., Saltoun R., Falkenberg F. Lack of requirement for thymocytes for efficient antibody formation to trinitrophenylated mouse red cells in mice: role for thymocytes in suppression of the immune response. Eur J Immunol. 1975 Mar;5(3):220–223. doi: 10.1002/eji.1830050315. [DOI] [PubMed] [Google Scholar]
  21. Naor D. Unresponsiveness to modified self antigens - a censorship mechanism controlling autoimmunity? Immunol Rev. 1980;50:187–226. doi: 10.1111/j.1600-065x.1980.tb00312.x. [DOI] [PubMed] [Google Scholar]
  22. Sarris A. H., Palade G. E. The sialoglycoproteins of murine erythrocyte ghosts. A modified periodic acid-Schiff stain procedure staining nonsubstituted and O-acetylated sialyl residues on glycopeptides. J Biol Chem. 1979 Jul 25;254(14):6724–6731. [PubMed] [Google Scholar]
  23. Shinomiya H., Sukegawa T., Hatanaka M., Utsumi S. Parallelism between regulatory effects of erythrocyte glycoproteins on phagocytosis and on the alternative complement pathway. Immunology. 1983 Aug;49(4):649–655. [PMC free article] [PubMed] [Google Scholar]
  24. Turner J. D., Rouser G. Precise quantitative determination of human blood lipids by thin-layer and triethylaminoethylcellulose column chromatography. I. Erythrocyte lipids. Anal Biochem. 1970 Dec;38(2):423–436. doi: 10.1016/0003-2697(70)90467-7. [DOI] [PubMed] [Google Scholar]
  25. Utsumi S., Shinomiya H., Minami J., Sonoda S. Inhibition of phagocytosis by erythrocyte membrane sialoglycoprotein on target liposomes. Immunology. 1983 May;49(1):113–120. [PMC free article] [PubMed] [Google Scholar]
  26. Yasuda T., Dancey G. F., Kinsky S. C. Immunogenic properties of liposomal model membranes in mice. J Immunol. 1977 Dec;119(6):1863–1867. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES