Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jan 1;24(1):206–209. doi: 10.1093/nar/24.1.206

The FSSP database: fold classification based on structure-structure alignment of proteins.

L Holm 1, C Sander 1
PMCID: PMC145583  PMID: 8594580

Abstract

The FSSP database presents a continuously updated classification of 3-D protein folds based on an all-against-all comparison of structures currently in the Protein Data Bank (PDB) [Bernstein et al. (1977) J. Mol. Biol., 112, 535- 542]. The database currently contains an extended structural family for each of 600 representative protein chains which have <25% mutual sequence identity. The results of the exhaustive pairwise structure comparisons are reported in the form of a fold tree generated by hierarchical clustering and as a series of structurally representative sets of folds at varying levels of uniqueness. For each query structure from the representative set, there is a database entry containing structure-structure alignments with its structural neighbours in the representative set and its sequence homologs in the PDB. All alignments are based purely on the 3-D co-ordinates of the proteins and are derived by an automatic structure comparison program (Dali). The FSSP database is accessible electronically on the World Wide Web and by anonymous ftp.

Full Text

The Full Text of this article is available as a PDF (179.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992 May 11;20 (Suppl):2013–2018. doi: 10.1093/nar/20.suppl.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Etzold T., Argos P. SRS--an indexing and retrieval tool for flat file data libraries. Comput Appl Biosci. 1993 Feb;9(1):49–57. doi: 10.1093/bioinformatics/9.1.49. [DOI] [PubMed] [Google Scholar]
  4. Hobohm U., Scharf M., Schneider R., Sander C. Selection of representative protein data sets. Protein Sci. 1992 Mar;1(3):409–417. doi: 10.1002/pro.5560010313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holm L., Sander C. Dali: a network tool for protein structure comparison. Trends Biochem Sci. 1995 Nov;20(11):478–480. doi: 10.1016/s0968-0004(00)89105-7. [DOI] [PubMed] [Google Scholar]
  6. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  7. Holm L., Sander C. Searching protein structure databases has come of age. Proteins. 1994 Jul;19(3):165–173. doi: 10.1002/prot.340190302. [DOI] [PubMed] [Google Scholar]
  8. Holm L., Sander C. The FSSP database of structurally aligned protein fold families. Nucleic Acids Res. 1994 Sep;22(17):3600–3609. [PMC free article] [PubMed] [Google Scholar]
  9. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  10. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  11. Orengo C. A., Flores T. P., Taylor W. R., Thornton J. M. Identification and classification of protein fold families. Protein Eng. 1993 Jul;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
  12. Overington J., Johnson M. S., Sali A., Blundell T. L. Tertiary structural constraints on protein evolutionary diversity: templates, key residues and structure prediction. Proc Biol Sci. 1990 Aug 22;241(1301):132–145. doi: 10.1098/rspb.1990.0077. [DOI] [PubMed] [Google Scholar]
  13. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  14. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  15. Sutton R. B., Davletov B. A., Berghuis A. M., Südhof T. C., Sprang S. R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell. 1995 Mar 24;80(6):929–938. doi: 10.1016/0092-8674(95)90296-1. [DOI] [PubMed] [Google Scholar]
  16. Valencia A., Kjeldgaard M., Pai E. F., Sander C. GTPase domains of ras p21 oncogene protein and elongation factor Tu: analysis of three-dimensional structures, sequence families, and functional sites. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5443–5447. doi: 10.1073/pnas.88.12.5443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES