Abstract
In our previous work we have shown that the oligonucleotide 5'-GGGGAGGGGGAGG-3' gives a very stable and specific triplex with the promoter of the murine c-pim-1 proto-oncogene in vitro[Svinarchuk, F., Bertrand, J.-R. and Malvy, C.(1994)Nucleic Acids Res., 22, 3742-3747]. In the present work, we have tested triplex formation with some derivatives of this oligonucleotide which are designed to be degradation-resistant inside the cells, and we show that phosphorothioate and the oligonucleotide with a 3' terminal amino group are still able to form triplexes. Moreover these oligonucleotides, like the 13mer oligonucleotide of similar composition [Svinarchuk, F., Paoletti, J., and Malvy, C. (1995) J. Biol. Chem., 270, 14068-14071], are able to stabilize the targeted duplex. In vivo DMS footprint analysis after electroporation of the pre-formed triplex into the cell have shown the presence of the triple helix inside the cells. This triplex structure partially blocks c-pim-1 promotor activity as shown by transient assay with a c-pim-1 promoter-luciferase gene construct. To our knowledge these data are the first direct evidence that conditions inside cells are favorable for triplex stability with non-modified oligonucleotides. However we were unable to show triplex formation inside living cells using various methods of oligonucleotide delivery. We suppose that this may be due to the oligonucleotide being sequestered by cellular processes or proteins. Further work is needed to find oligonucleotide derivatives and ways of their delivery to overcome the problem of triplex formation inside the cells.
Full Text
The Full Text of this article is available as a PDF (138.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
- Beasty A. M., Behe M. J. An oligopurine sequence bias occurs in eukaryotic viruses. Nucleic Acids Res. 1988 Feb 25;16(4):1517–1528. doi: 10.1093/nar/16.4.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett R. M. As nature intended? The uptake of DNA and oligonucleotides by eukaryotic cells. Antisense Res Dev. 1993 Fall;3(3):235–241. doi: 10.1089/ard.1993.3.235. [DOI] [PubMed] [Google Scholar]
- Cereghini S., Yaniv M. Assembly of transfected DNA into chromatin: structural changes in the origin-promoter-enhancer region upon replication. EMBO J. 1984 Jun;3(6):1243–1253. doi: 10.1002/j.1460-2075.1984.tb01959.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiang M. Y., Chan H., Zounes M. A., Freier S. M., Lima W. F., Bennett C. F. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem. 1991 Sep 25;266(27):18162–18171. [PubMed] [Google Scholar]
- Ehrlich G., Patinkin D., Ginzberg D., Zakut H., Eckstein F., Soreq H. Use of partially phosphorothioated "antisense" oligodeoxynucleotides for sequence-dependent modulation of hematopoiesis in culture. Antisense Res Dev. 1994 Fall;4(3):173–183. doi: 10.1089/ard.1994.4.173. [DOI] [PubMed] [Google Scholar]
- Grigoriev M., Praseuth D., Guieysse A. L., Robin P., Thuong N. T., Hélène C., Harel-Bellan A. Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3501–3505. doi: 10.1073/pnas.90.8.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grigoriev M., Praseuth D., Robin P., Hemar A., Saison-Behmoaras T., Dautry-Varsat A., Thuong N. T., Hélène C., Harel-Bellan A. A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence. J Biol Chem. 1992 Feb 15;267(5):3389–3395. [PubMed] [Google Scholar]
- Hacia J. G., Wold B. J., Dervan P. B. Phosphorothioate oligonucleotide-directed triple helix formation. Biochemistry. 1994 May 10;33(18):5367–5369. doi: 10.1021/bi00184a002. [DOI] [PubMed] [Google Scholar]
- Iwanaga T., Ferriola P. C. Cellular uptake of phosphorothioate oligodeoxynucleotides is negatively affected by cell density in a transformed rat tracheal epithelial cell line: implication for antisense approaches. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1152–1157. doi: 10.1006/bbrc.1993.1337. [DOI] [PubMed] [Google Scholar]
- Kiyama R., Camerini-Otero R. D. A triplex DNA-binding protein from human cells: purification and characterization. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10450–10454. doi: 10.1073/pnas.88.23.10450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laird P. W., van der Lugt N. M., Clarke A., Domen J., Linders K., McWhir J., Berns A., Hooper M. In vivo analysis of Pim-1 deficiency. Nucleic Acids Res. 1993 Oct 11;21(20):4750–4755. doi: 10.1093/nar/21.20.4750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malkov V. A., Voloshin O. N., Soyfer V. N., Frank-Kamenetskii M. D. Cation and sequence effects on stability of intermolecular pyrimidine-purine-purine triplex. Nucleic Acids Res. 1993 Feb 11;21(3):585–591. doi: 10.1093/nar/21.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsukura M., Shinozuka K., Zon G., Mitsuya H., Reitz M., Cohen J. S., Broder S. Phosphorothioate analogs of oligodeoxynucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7706–7710. doi: 10.1073/pnas.84.21.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntyre K. W., Lombard-Gillooly K., Perez J. R., Kunsch C., Sarmiento U. M., Larigan J. D., Landreth K. T., Narayanan R. A sense phosphorothioate oligonucleotide directed to the initiation codon of transcription factor NF-kappa B p65 causes sequence-specific immune stimulation. Antisense Res Dev. 1993 Winter;3(4):309–322. doi: 10.1089/ard.1993.3.309. [DOI] [PubMed] [Google Scholar]
- McShan W. M., Rossen R. D., Laughter A. H., Trial J., Kessler D. J., Zendegui J. G., Hogan M. E., Orson F. M. Inhibition of transcription of HIV-1 in infected human cells by oligodeoxynucleotides designed to form DNA triple helices. J Biol Chem. 1992 Mar 15;267(8):5712–5721. [PubMed] [Google Scholar]
- Meeker T. C., Loeb J., Ayres M., Sellers W. The human Pim-1 gene is selectively transcribed in different hemato-lymphoid cell lines in spite of a G + C-rich housekeeping promoter. Mol Cell Biol. 1990 Apr;10(4):1680–1688. doi: 10.1128/mcb.10.4.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Möröy T., Grzeschiczek A., Petzold S., Hartmann K. U. Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10734–10738. doi: 10.1073/pnas.90.22.10734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Neill D., Bornschlegel K., Flamm M., Castle M., Bank A. A DNA-binding factor in adult hematopoietic cells interacts with a pyrimidine-rich domain upstream from the human delta-globin gene. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8953–8957. doi: 10.1073/pnas.88.20.8953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojwang J., Okleberry K. M., Marshall H. B., Vu H. M., Huffman J. H., Rando R. F. Inhibition of Friend murine leukemia virus activity by guanosine/thymidine oligonucleotides. Antiviral Res. 1994 Sep;25(1):27–41. doi: 10.1016/0166-3542(94)90091-4. [DOI] [PubMed] [Google Scholar]
- Orson F. M., Thomas D. W., McShan W. M., Kessler D. J., Hogan M. E. Oligonucleotide inhibition of IL2R alpha mRNA transcription by promoter region collinear triplex formation in lymphocytes. Nucleic Acids Res. 1991 Jun 25;19(12):3435–3441. doi: 10.1093/nar/19.12.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postel E. H., Flint S. J., Kessler D. J., Hogan M. E. Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8227–8231. doi: 10.1073/pnas.88.18.8227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rocancourt D., Bonnerot C., Jouin H., Emerman M., Nicolas J. F. Activation of a beta-galactosidase recombinant provirus: application to titration of human immunodeficiency virus (HIV) and HIV-infected cells. J Virol. 1990 Jun;64(6):2660–2668. doi: 10.1128/jvi.64.6.2660-2668.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz O., Virelizier J. L., Montagnier L., Hazan U. A microtransfection method using the luciferase-encoding reporter gene for the assay of human immunodeficiency virus LTR promoter activity. Gene. 1990 Apr 16;88(2):197–205. doi: 10.1016/0378-1119(90)90032-m. [DOI] [PubMed] [Google Scholar]
- Selten G., Cuypers H. T., Boelens W., Robanus-Maandag E., Verbeek J., Domen J., van Beveren C., Berns A. The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell. 1986 Aug 15;46(4):603–611. doi: 10.1016/0092-8674(86)90886-x. [DOI] [PubMed] [Google Scholar]
- Simon J. A., Lis J. T. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 1987 Apr 10;15(7):2971–2988. doi: 10.1093/nar/15.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svinarchuk F. P., Lavrovsky Y. V., Konevets D. A., Vlassov V. V. Nuclear peptides specifically interacting with oligonucleotides. Nucleic Acids Symp Ser. 1991;(24):316–316. [PubMed] [Google Scholar]
- Svinarchuk F., Bertrand J. R., Malvy C. A short purine oligonucleotide forms a highly stable triple helix with the promoter of the murine c-pim-1 proto-oncogene. Nucleic Acids Res. 1994 Sep 11;22(18):3742–3747. doi: 10.1093/nar/22.18.3742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svinarchuk F., Paoletti J., Malvy C. An unusually stable purine(purine-pyrimidine) short triplex. The third strand stabilizes double-stranded DNA. J Biol Chem. 1995 Jun 9;270(23):14068–14071. doi: 10.1074/jbc.270.23.14068. [DOI] [PubMed] [Google Scholar]
- Wang G., Levy D. D., Seidman M. M., Glazer P. M. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol Cell Biol. 1995 Mar;15(3):1759–1768. doi: 10.1128/mcb.15.3.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Washbrook E., Fox K. R. Comparison of antiparallel A.AT and T.AT triplets within an alternate strand DNA triple helix. Nucleic Acids Res. 1994 Sep 25;22(19):3977–3982. doi: 10.1093/nar/22.19.3977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westin L., Blomquist P., Milligan J. F., Wrange O. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier. Nucleic Acids Res. 1995 Jun 25;23(12):2184–2191. doi: 10.1093/nar/23.12.2184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto T., Yamamoto S., Kataoka T., Tokunaga T. Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer;4(2):119–122. doi: 10.1089/ard.1994.4.119. [DOI] [PubMed] [Google Scholar]
- van Lohuizen M., Verbeek S., Krimpenfort P., Domen J., Saris C., Radaszkiewicz T., Berns A. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell. 1989 Feb 24;56(4):673–682. doi: 10.1016/0092-8674(89)90589-8. [DOI] [PubMed] [Google Scholar]