Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jan 15;24(2):386–393. doi: 10.1093/nar/24.2.386

Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG box protein Abf2p.

S M Newman 1, O Zelenaya-Troitskaya 1, P S Perlman 1, R A Butow 1
PMCID: PMC145633  PMID: 8628667

Abstract

DNA-protein complexes (nucleoids) are believed to be the segregating unit of mitochondrial DNA (mtDNA) in Saccharomyces cerevisiae. A mitochondrial HMG box protein, Abf2p, is needed for maintenance of mtDNA in cells grown on rich dextrose medium, but is dispensible in glycerol grown cells. As visualized by 4',6'-diamino-2-phenylindole staining, mtDNA nucleoids in mutant cells lacking Abf2p ( delta abf2) are diffuse compared with those in wild-type cells. We have isolated mtDNA nucleoids and characterized two mtDNA-protein complexes, termed NCLDp-2 and NCLDs-2, containing distinct but overlapping sets of polypeptides. This protocol yields similar nucleoid complexes from the delta abf2 mutant, although several proteins appear lacking from NCLDs-2. Segments of mtDNA detected with probes to COXII, VAR1 and ori5 sequences are equally sensitive to DNase I digestion in NCLDs-2 and NCLDp-2 from wild-type cells and from the delta abf2 mutant. However, COXII and VAR1 sequences are 4-to 5-fold more sensitive to DNase I digestion of mtDNA in toluene-permeabilized mitochondria from the delta abf2 mutant than from wild-type cells, but no difference in DNase I sensitivity was detected with the ori5 probe. These results provide a first indication that Abf2p influences differential organization of mtDNA sequences.

Full Text

The Full Text of this article is available as a PDF (150.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albring M., Griffith J., Attardi G. Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1348–1352. doi: 10.1073/pnas.74.4.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amati B. B., Gasser S. M. Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold. Cell. 1988 Sep 23;54(7):967–978. doi: 10.1016/0092-8674(88)90111-0. [DOI] [PubMed] [Google Scholar]
  3. Azpiroz R., Butow R. A. Patterns of mitochondrial sorting in yeast zygotes. Mol Biol Cell. 1993 Jan;4(1):21–36. doi: 10.1091/mbc.4.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bianchi M. E. Prokaryotic HU and eukaryotic HMG1: a kinked relationship. Mol Microbiol. 1994 Oct;14(1):1–5. doi: 10.1111/j.1365-2958.1994.tb01261.x. [DOI] [PubMed] [Google Scholar]
  5. Bonnefoy E., Rouvière-Yaniv J. HU, the major histone-like protein of E. coli, modulates the binding of IHF to oriC. EMBO J. 1992 Dec;11(12):4489–4496. doi: 10.1002/j.1460-2075.1992.tb05550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caron F., Jacq C., Rouvière-Yaniv J. Characterization of a histone-like protein extracted from yeast mitochondria. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4265–4269. doi: 10.1073/pnas.76.9.4265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diffley J. F., Stillman B. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7864–7868. doi: 10.1073/pnas.88.17.7864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diffley J. F., Stillman B. DNA binding properties of an HMG1-related protein from yeast mitochondria. J Biol Chem. 1992 Feb 15;267(5):3368–3374. [PubMed] [Google Scholar]
  9. Fisher R. P., Lisowsky T., Parisi M. A., Clayton D. A. DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem. 1992 Feb 15;267(5):3358–3367. [PubMed] [Google Scholar]
  10. Flashner Y., Gralla J. D. DNA dynamic flexibility and protein recognition: differential stimulation by bacterial histone-like protein HU. Cell. 1988 Aug 26;54(5):713–721. doi: 10.1016/s0092-8674(88)80016-3. [DOI] [PubMed] [Google Scholar]
  11. Ge H., Roeder R. G. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J Biol Chem. 1994 Jun 24;269(25):17136–17140. [PubMed] [Google Scholar]
  12. Ghivizzani S. C., Madsen C. S., Hauswirth W. W. In organello footprinting. Analysis of protein binding at regulatory regions in bovine mitochondrial DNA. J Biol Chem. 1993 Apr 25;268(12):8675–8682. [PubMed] [Google Scholar]
  13. Ghivizzani S. C., Madsen C. S., Nelen M. R., Ammini C. V., Hauswirth W. W. In organello footprint analysis of human mitochondrial DNA: human mitochondrial transcription factor A interactions at the origin of replication. Mol Cell Biol. 1994 Dec;14(12):7717–7730. doi: 10.1128/mcb.14.12.7717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gross D. S., Garrard W. T. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem. 1988;57:159–197. doi: 10.1146/annurev.bi.57.070188.001111. [DOI] [PubMed] [Google Scholar]
  15. Grosschedl R., Giese K., Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994 Mar;10(3):94–100. doi: 10.1016/0168-9525(94)90232-1. [DOI] [PubMed] [Google Scholar]
  16. Herrick J., Kern R., Guha S., Landoulsi A., Fayet O., Malki A., Kohiyama M. Parental strand recognition of the DNA replication origin by the outer membrane in Escherichia coli. EMBO J. 1994 Oct 3;13(19):4695–4703. doi: 10.1002/j.1460-2075.1994.tb06793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudspeth M. E., Ainley W. M., Shumard D. S., Butow R. A., Grossman L. I. Location and structure of the var1 gene on yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell. 1982 Sep;30(2):617–626. doi: 10.1016/0092-8674(82)90258-6. [DOI] [PubMed] [Google Scholar]
  18. Hudspeth M. E., Shumard D. S., Tatti K. M., Grossman L. I. Rapid purification of yeast mitochondrial DNA in high yield. Biochim Biophys Acta. 1980 Dec 11;610(2):221–228. doi: 10.1016/0005-2787(80)90003-9. [DOI] [PubMed] [Google Scholar]
  19. Kao L. R., Megraw T. L., Chae C. B. Essential role of the HMG domain in the function of yeast mitochondrial histone HM: functional complementation of HM by the nuclear nonhistone protein NHP6A. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5598–5602. doi: 10.1073/pnas.90.12.5598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kleff S., Kemper B., Sternglanz R. Identification and characterization of yeast mutants and the gene for a cruciform cutting endonuclease. EMBO J. 1992 Feb;11(2):699–704. doi: 10.1002/j.1460-2075.1992.tb05102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lambowitz A. M. Preparation and analysis of mitochondrial ribosomes. Methods Enzymol. 1979;59:421–433. doi: 10.1016/0076-6879(79)59103-4. [DOI] [PubMed] [Google Scholar]
  23. Lockshon D., Zweifel S. G., Freeman-Cook L. L., Lorimer H. E., Brewer B. J., Fangman W. L. A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell. 1995 Jun 16;81(6):947–955. doi: 10.1016/0092-8674(95)90014-4. [DOI] [PubMed] [Google Scholar]
  24. Megraw T. L., Chae C. B. Functional complementarity between the HMG1-like yeast mitochondrial histone HM and the bacterial histone-like protein HU. J Biol Chem. 1993 Jun 15;268(17):12758–12763. [PubMed] [Google Scholar]
  25. Miyakawa I., Sando N., Kawano S., Nakamura S., Kuroiwa T. Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. J Cell Sci. 1987 Nov;88(Pt 4):431–439. doi: 10.1242/jcs.88.4.431. [DOI] [PubMed] [Google Scholar]
  26. Miyakawa I., Tokitaka M., Shiiba D., Sawada T., Fujikura Y., Fukumoto T., Sando N. Preparation of a monoclonal antibody specific for a 48-kDa protein from mitochondrial nucleoids of the yeast, Saccharomyces cerevisiae. Plant Cell Physiol. 1993 Jan;34(1):151–156. [PubMed] [Google Scholar]
  27. NASS M. M., NASS S., AFZELIUS B. A. THE GENERAL OCCURENCE OF MITOCHONDRIAL DNA. Exp Cell Res. 1965 Mar;37:516–539. doi: 10.1016/0014-4827(65)90204-1. [DOI] [PubMed] [Google Scholar]
  28. Nass M. M. Mitochondrial DNA. I. Intramitochondrial distribution and structural relations of single- and double-length circular DNA. J Mol Biol. 1969 Jun 28;42(3):521–528. doi: 10.1016/0022-2836(69)90240-x. [DOI] [PubMed] [Google Scholar]
  29. Nobrega F. G., Tzagoloff A. Assembly of the mitochondrial membrane system. DNA sequence and organization of the cytochrome b gene in Saccharomyces cerevisiae D273-10B. J Biol Chem. 1980 Oct 25;255(20):9828–9837. [PubMed] [Google Scholar]
  30. Oñate S. A., Prendergast P., Wagner J. P., Nissen M., Reeves R., Pettijohn D. E., Edwards D. P. The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol Cell Biol. 1994 May;14(5):3376–3391. doi: 10.1128/mcb.14.5.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Parikh V. S., Conrad-Webb H., Docherty R., Butow R. A. Interaction between the yeast mitochondrial and nuclear genomes influences the abundance of novel transcripts derived from the spacer region of the nuclear ribosomal DNA repeat. Mol Cell Biol. 1989 May;9(5):1897–1907. doi: 10.1128/mcb.9.5.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Parisi M. A., Clayton D. A. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science. 1991 May 17;252(5008):965–969. doi: 10.1126/science.2035027. [DOI] [PubMed] [Google Scholar]
  33. Peebles C. L., Belcher S. M., Zhang M., Dietrich R. C., Perlman P. S. Mutation of the conserved first nucleotide of a group II intron from yeast mitochondrial DNA reduces the rate but allows accurate splicing. J Biol Chem. 1993 Jun 5;268(16):11929–11938. [PubMed] [Google Scholar]
  34. Pettijohn D. E. Histone-like proteins and bacterial chromosome structure. J Biol Chem. 1988 Sep 15;263(26):12793–12796. [PubMed] [Google Scholar]
  35. Potter D. A., Fostel J. M., Berninger M., Pardue M. L., Cech T. R. DNA-protein interactions in the Drosophila melanogaster mitochondrial genome as deduced from trimethylpsoralen crosslinking patterns. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4118–4122. doi: 10.1073/pnas.77.7.4118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Preobrajenskaya O., Boullard A., Boubrik F., Schnarr M., Rouvière-Yaniv J. The protein HU can displace the LexA repressor from its DNA-binding sites. Mol Microbiol. 1994 Aug;13(3):459–467. doi: 10.1111/j.1365-2958.1994.tb00440.x. [DOI] [PubMed] [Google Scholar]
  37. Rothfield L. I. Bacterial chromosome segregation. Cell. 1994 Jul 1;77(7):963–966. doi: 10.1016/0092-8674(94)90435-9. [DOI] [PubMed] [Google Scholar]
  38. Simchen G., Hugerat Y. What determines whether chromosomes segregate reductionally or equationally in meiosis? Bioessays. 1993 Jan;15(1):1–8. doi: 10.1002/bies.950150102. [DOI] [PubMed] [Google Scholar]
  39. Suzuki T., Kawano S., Kuroiwa T. Structure of three-dimensionally rod-shaped mitochondrial nucleoids isolated from the slime mould Physarum polycephalum. J Cell Sci. 1982 Dec;58:241–261. doi: 10.1242/jcs.58.1.241. [DOI] [PubMed] [Google Scholar]
  40. Van Tuyle G. C., McPherson M. L. A compact form of rat liver mitochondrial DNA stabilized by bound proteins. J Biol Chem. 1979 Jul 10;254(13):6044–6053. [PubMed] [Google Scholar]
  41. Williamson D. H., Fennell D. J. Visualization of yeast mitochondrial DNA with the fluorescent stain "DAPI". Methods Enzymol. 1979;56:728–733. doi: 10.1016/0076-6879(79)56065-0. [DOI] [PubMed] [Google Scholar]
  42. Xu C., Ray D. S. Isolation of proteins associated with kinetoplast DNA networks in vivo. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1786–1789. doi: 10.1073/pnas.90.5.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zassenhaus H. P., Martin N. C., Butow R. A. Origins of transcripts of the yeast mitochondrial var 1 gene. J Biol Chem. 1984 May 10;259(9):6019–6027. [PubMed] [Google Scholar]
  44. Zelenaya-Troitskaya O., Perlman P. S., Butow R. A. An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. EMBO J. 1995 Jul 3;14(13):3268–3276. doi: 10.1002/j.1460-2075.1995.tb07330.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zweifel S. G., Fangman W. L. A nuclear mutation reversing a biased transmission of yeast mitochondrial DNA. Genetics. 1991 Jun;128(2):241–249. doi: 10.1093/genetics/128.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. de Zamaroczy M., Faugeron-Fonty G., Baldacci G., Goursot R., Bernardi G. The ori sequences of the mitochondrial genome of a wild-type yeast strain: number, location, orientation and structure. Gene. 1984 Dec;32(3):439–457. doi: 10.1016/0378-1119(84)90019-2. [DOI] [PubMed] [Google Scholar]
  47. de Zamaroczy M., Marotta R., Faugeron-Fonty G., Goursot R., Mangin M., Baldacci G., Bernardi G. The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity. Nature. 1981 Jul 2;292(5818):75–78. doi: 10.1038/292075a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES