Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jan 15;24(2):354–360. doi: 10.1093/nar/24.2.354

An oligodeoxyribonucleotide N3'--> P5' phosphoramidate duplex forms an A-type helix in solution.

D Ding 1, S M Grayaznov 1, D H Lloyd 1, S Chandrasekaran 1, S Yao 1, L Ratmeyer 1, Y Pan 1, W D Wilson 1
PMCID: PMC145634  PMID: 8628662

Abstract

The solution conformations of the dinucleotide d(TT) and the modified duplex d(CGCGAATTCGCG)2 with N3'--> P5' phosphoramidate internucleoside linkages have been studied using circular dichroism (CD) and NMR spectroscopy. The CD spectra indicate that the duplex conformation is similar to that of isosequential phosphodiester RNA, a A-type helix, and is different from that of DNA, a B-type helix, NMR studies of model dimers d(TpT) and N3'--> P5' phosphoramidate d(TnpT) show that the sugar ring conformation changes from predominantly C2'-endo to C3'-endo when the 3'-phosphoester is replaced by a phosphoramidate group. Two-dimensional NMR (NOESY, DQF-COSY and TOCSY spectra) studies of the duplex provide additional details about the A-type duplex conformation of the oligonucleotide phosphoramidate and confirm that all furanose rings of 3'-aminonucleotides adopt predominantly N-type sugar puckering.

Full Text

The Full Text of this article is available as a PDF (93.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayever E., Iversen P. L., Bishop M. R., Sharp J. G., Tewary H. K., Arneson M. A., Pirruccello S. J., Ruddon R. W., Kessinger A., Zon G. Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p53 for acute myelogenous leukemia and myelodysplastic syndrome: initial results of a phase I trial. Antisense Res Dev. 1993 Winter;3(4):383–390. doi: 10.1089/ard.1993.3.383. [DOI] [PubMed] [Google Scholar]
  2. Chou S. H., Flynn P., Reid B. Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers: r(CGCGAAUUCGCG) and r(CGCGUAUACGCG). Biochemistry. 1989 Mar 21;28(6):2422–2435. doi: 10.1021/bi00432a013. [DOI] [PubMed] [Google Scholar]
  3. Dickerson R. E., Drew H. R., Conner B. N., Wing R. M., Fratini A. V., Kopka M. L. The anatomy of A-, B-, and Z-DNA. Science. 1982 Apr 30;216(4545):475–485. doi: 10.1126/science.7071593. [DOI] [PubMed] [Google Scholar]
  4. Kibler-Herzog L., Zon G., Uznanski B., Whittier G., Wilson W. D. Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers. Nucleic Acids Res. 1991 Jun 11;19(11):2979–2986. doi: 10.1093/nar/19.11.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lane A. N., Jenkins T. C., Brown T., Neidle S. Interaction of berenil with the EcoRI dodecamer d(CGCGAATTCGCG)2 in solution studied by NMR. Biochemistry. 1991 Feb 5;30(5):1372–1385. doi: 10.1021/bi00219a030. [DOI] [PubMed] [Google Scholar]
  6. Li Y., Zon G., Wilson W. D. Thermodynamics of DNA duplexes with adjacent G.A mismatches. Biochemistry. 1991 Jul 30;30(30):7566–7572. doi: 10.1021/bi00244a028. [DOI] [PubMed] [Google Scholar]
  7. Radhakrishnan I., Patel D. J. DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry. 1994 Sep 27;33(38):11405–11416. doi: 10.1021/bi00204a001. [DOI] [PubMed] [Google Scholar]
  8. Riazance J. H., Baase W. A., Johnson W. C., Jr, Hall K., Cruz P., Tinoco I., Jr Evidence for Z-form RNA by vacuum UV circular dichroism. Nucleic Acids Res. 1985 Jul 11;13(13):4983–4989. doi: 10.1093/nar/13.13.4983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rinkel L. J., Altona C. Conformational analysis of the deoxyribofuranose ring in DNA by means of sums of proton-proton coupling constants: a graphical method. J Biomol Struct Dyn. 1987 Feb;4(4):621–649. doi: 10.1080/07391102.1987.10507665. [DOI] [PubMed] [Google Scholar]
  10. Tran-Dinh S., Neumann J. M., Taboury J., Huynh-Dinh T., Renous S., Genissel B., Igolen J. DNA fragment conformations. 1H-NMR comparative studies of helix-coil transition and conformation of d(C-A-C-G-T-G) and d(G-T-G-C-A-C). Influence of helix formation on proton chemical shifts. Eur J Biochem. 1983 Jul 1;133(3):579–589. doi: 10.1111/j.1432-1033.1983.tb07502.x. [DOI] [PubMed] [Google Scholar]
  11. Wilson W. D., Mizan S., Tanious F. A., Yao S., Zon G. The interaction of intercalators and groove-binding agents with DNA triple-helical structures: the influence of ligand structure, DNA backbone modifications and sequence. J Mol Recognit. 1994 Jun;7(2):89–98. doi: 10.1002/jmr.300070206. [DOI] [PubMed] [Google Scholar]
  12. Zuo E. T., Tanious F. A., Wilson W. D., Zon G., Tan G. S., Wartell R. M. Effect of base-pair sequence on the conformations and thermally induced transitions in oligodeoxyribonucleotides containing only AT base pairs. Biochemistry. 1990 May 8;29(18):4446–4456. doi: 10.1021/bi00470a027. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES