Skip to main content
Immunology logoLink to Immunology
. 1996 Jul;88(3):331–339. doi: 10.1046/j.1365-2567.1996.d01-676.x

Molecular characterization of VDJ transcripts from a newborn piglet.

J Sun 1, J E Butler 1
PMCID: PMC1456353  PMID: 8774347

Abstract

The sequences of 42 transcripts, expressed with IgM, IgG and IgA and cloned from the mesenteric lymph node of a newborn piglet, are described. Forty transcripts used either DHA and DHB and their FR4 were identical to the single swine germline JH. The low frequency of somatic mutation made it possible to identify 35/41 as originating from five putative germline VH genes, of which VHA, VHB and VHC accounted for > 85%. The remaining six transcripts were hybrids of these five germline genes. The most 3' functional VH gene (VH2 = VHB) was the only one exclusively expressed with IgM although VHA, of unknown location in the genome, accounted for half of all transcripts. Junctional diversity in CDR3 was extensive and asymmetrical, in that D-J joining contributed more diversity than V-DJ joining. Reading frame II was used twice as frequently as frame III and the CDR3 generated using the former would have a higher expected R/S ratio. This study indicated that the expressed VH repertoire of the newborn piglet is restricted and nearly germline although junctional diversity is mature and better developed than in fetal mice. The hybrid clones suggest that swine compensate for their < 20 VH genes and single JH by using somatic gene conversion. There was no evidence for exclusive or preferential expression of the most 3' VH gene as occurs in chickens and rabbits respectively, and switching to downstream constant regions probably occurs in utero, even in the theoretical absence of environmental antigens and maternal regulatory molecules. Preferential VHA expression is probably a selection phenomenon.

Full text

PDF
331

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berek C., Milstein C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev. 1987 Apr;96:23–41. doi: 10.1111/j.1600-065x.1987.tb00507.x. [DOI] [PubMed] [Google Scholar]
  2. Binns R. M., Licence S. T. Patterns of migration of labelled blood lymphocyte subpopulations: evidence for two types of Peyer's patch in the young pig. Adv Exp Med Biol. 1985;186:661–668. doi: 10.1007/978-1-4613-2463-8_81. [DOI] [PubMed] [Google Scholar]
  3. Crews S., Griffin J., Huang H., Calame K., Hood L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell. 1981 Jul;25(1):59–66. doi: 10.1016/0092-8674(81)90231-2. [DOI] [PubMed] [Google Scholar]
  4. Cuisinier A. M., Guigou V., Boubli L., Fougereau M., Tonnelle C. Preferential expression of VH5 and VH6 immunoglobulin genes in early human B-cell ontogeny. Scand J Immunol. 1989 Oct;30(4):493–497. doi: 10.1111/j.1365-3083.1989.tb02455.x. [DOI] [PubMed] [Google Scholar]
  5. Feeney A. J. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J Exp Med. 1990 Nov 1;172(5):1377–1390. doi: 10.1084/jem.172.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gearhart P. J., Johnson N. D., Douglas R., Hood L. IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature. 1981 May 7;291(5810):29–34. doi: 10.1038/291029a0. [DOI] [PubMed] [Google Scholar]
  7. George J. F., Jr, Schroeder H. W., Jr Developmental regulation of D beta reading frame and junctional diversity in T cell receptor-beta transcripts from human thymus. J Immunol. 1992 Feb 15;148(4):1230–1239. [PubMed] [Google Scholar]
  8. Gregoire K. E., Goldschneider I., Barton R. W., Bollum F. J. Ontogeny of terminal deoxynucleotidyl transferase-positive cells in lymphohemopoietic tissues of rat and mouse. J Immunol. 1979 Sep;123(3):1347–1352. [PubMed] [Google Scholar]
  9. Gu H., Tarlinton D., Müller W., Rajewsky K., Förster I. Most peripheral B cells in mice are ligand selected. J Exp Med. 1991 Jun 1;173(6):1357–1371. doi: 10.1084/jem.173.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herzenberg L. A., Stall A. M., Lalor P. A., Sidman C., Moore W. A., Parks D. R., Herzenberg L. A. The Ly-1 B cell lineage. Immunol Rev. 1986 Oct;93:81–102. doi: 10.1111/j.1600-065x.1986.tb01503.x. [DOI] [PubMed] [Google Scholar]
  11. Huetz F., Carlsson L., Tornberg U. C., Holmberg D. V-region directed selection in differentiating B lymphocytes. EMBO J. 1993 May;12(5):1819–1826. doi: 10.1002/j.1460-2075.1993.tb05830.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Insel R. A., Varade W. S., Marin E. Human splenic IgM immunoglobulin transcripts are mutated at high frequency. Mol Immunol. 1994 Apr;31(5):383–392. doi: 10.1016/0161-5890(94)90116-3. [DOI] [PubMed] [Google Scholar]
  13. Jeong H. D., Teale J. M. Comparison of the fetal and adult functional B cell repertoires by analysis of VH gene family expression. J Exp Med. 1988 Aug 1;168(2):589–603. doi: 10.1084/jem.168.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kantor A. B., Herzenberg L. A. Origin of murine B cell lineages. Annu Rev Immunol. 1993;11:501–538. doi: 10.1146/annurev.iy.11.040193.002441. [DOI] [PubMed] [Google Scholar]
  15. Kearney J. F., Vakil M. Idiotype-directed interactions during ontogeny play a major role in the establishment of the adult B cell repertoire. Immunol Rev. 1986 Dec;94:39–50. doi: 10.1111/j.1600-065x.1986.tb01163.x. [DOI] [PubMed] [Google Scholar]
  16. Klobasa F., Werhahn E., Butler J. E. Regulation of humoral immunity in the piglet by immunoglobulins of maternal origin. Res Vet Sci. 1981 Sep;31(2):195–206. [PubMed] [Google Scholar]
  17. Knight K. L. Restricted VH gene usage and generation of antibody diversity in rabbit. Annu Rev Immunol. 1992;10:593–616. doi: 10.1146/annurev.iy.10.040192.003113. [DOI] [PubMed] [Google Scholar]
  18. Kocks C., Rajewsky K. Stable expression and somatic hypermutation of antibody V regions in B-cell developmental pathways. Annu Rev Immunol. 1989;7:537–559. doi: 10.1146/annurev.iy.07.040189.002541. [DOI] [PubMed] [Google Scholar]
  19. Maizels N., Bothwell A. The T-cell-independent immune response to the hapten NP uses a large repertoire of heavy chain genes. Cell. 1985 Dec;43(3 Pt 2):715–720. doi: 10.1016/0092-8674(85)90244-2. [DOI] [PubMed] [Google Scholar]
  20. Malynn B. A., Yancopoulos G. D., Barth J. E., Bona C. A., Alt F. W. Biased expression of JH-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J Exp Med. 1990 Mar 1;171(3):843–859. doi: 10.1084/jem.171.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCormack W. T., Thompson C. B. Somatic diversification of the chicken immunoglobulin light-chain gene. Adv Immunol. 1990;48:41–67. doi: 10.1016/s0065-2776(08)60751-8. [DOI] [PubMed] [Google Scholar]
  22. Mian I. S., Bradwell A. R., Olson A. J. Structure, function and properties of antibody binding sites. J Mol Biol. 1991 Jan 5;217(1):133–151. doi: 10.1016/0022-2836(91)90617-f. [DOI] [PubMed] [Google Scholar]
  23. Milili M., Fougereau M., Guglielmi P., Schiff C. Early occurrence of immunoglobulin isotype switching in human fetal liver. Mol Immunol. 1991 Jul;28(7):753–761. doi: 10.1016/0161-5890(91)90118-4. [DOI] [PubMed] [Google Scholar]
  24. Mortari F., Wang J. Y., Schroeder H. W., Jr Human cord blood antibody repertoire. Mixed population of VH gene segments and CDR3 distribution in the expressed C alpha and C gamma repertoires. J Immunol. 1993 Feb 15;150(4):1348–1357. [PubMed] [Google Scholar]
  25. Perlmutter R. M., Kearney J. F., Chang S. P., Hood L. E. Developmentally controlled expression of immunoglobulin VH genes. Science. 1985 Mar 29;227(4694):1597–1601. doi: 10.1126/science.3975629. [DOI] [PubMed] [Google Scholar]
  26. Phillips N. E., Parker D. C. Fc-dependent inhibition of mouse B cell activation by whole anti-mu antibodies. J Immunol. 1983 Feb;130(2):602–606. [PubMed] [Google Scholar]
  27. Rajewsky K., Förster I., Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science. 1987 Nov 20;238(4830):1088–1094. doi: 10.1126/science.3317826. [DOI] [PubMed] [Google Scholar]
  28. Reynaud C. A., Dahan A., Anquez V., Weill J. C. Somatic hyperconversion diversifies the single Vh gene of the chicken with a high incidence in the D region. Cell. 1989 Oct 6;59(1):171–183. doi: 10.1016/0092-8674(89)90879-9. [DOI] [PubMed] [Google Scholar]
  29. Reynaud C. A., Garcia C., Hein W. R., Weill J. C. Hypermutation generating the sheep immunoglobulin repertoire is an antigen-independent process. Cell. 1995 Jan 13;80(1):115–125. doi: 10.1016/0092-8674(95)90456-5. [DOI] [PubMed] [Google Scholar]
  30. Schroeder H. W., Jr, Hillson J. L., Perlmutter R. M. Early restriction of the human antibody repertoire. Science. 1987 Nov 6;238(4828):791–793. doi: 10.1126/science.3118465. [DOI] [PubMed] [Google Scholar]
  31. Schroeder H. W., Jr, Hillson J. L., Perlmutter R. M. Structure and evolution of mammalian VH families. Int Immunol. 1990;2(1):41–50. doi: 10.1093/intimm/2.1.41. [DOI] [PubMed] [Google Scholar]
  32. Sheehan K. M., Mainville C. A., Willert S., Brodeur P. H. The utilization of individual VH exons in the primary repertoire of adult BALB/c mice. J Immunol. 1993 Nov 15;151(10):5364–5375. [PubMed] [Google Scholar]
  33. Stokes C. R., Bailey M., Wilson A. D. Immunology of the porcine gastrointestinal tract. Vet Immunol Immunopathol. 1994 Oct;43(1-3):143–150. doi: 10.1016/0165-2427(94)90130-9. [DOI] [PubMed] [Google Scholar]
  34. Sun J., Kacskovics I., Brown W. R., Butler J. E. Expressed swine VH genes belong to a small VH gene family homologous to human VHIII. J Immunol. 1994 Dec 15;153(12):5618–5627. [PubMed] [Google Scholar]
  35. Ternynck T., Avrameas S. Murine natural monoclonal autoantibodies: a study of their polyspecificities and their affinities. Immunol Rev. 1986 Dec;94:99–112. doi: 10.1111/j.1600-065x.1986.tb01166.x. [DOI] [PubMed] [Google Scholar]
  36. Tomlinson I. M., Walter G., Marks J. D., Llewelyn M. B., Winter G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol. 1992 Oct 5;227(3):776–798. doi: 10.1016/0022-2836(92)90223-7. [DOI] [PubMed] [Google Scholar]
  37. Van Es J. H., Raaphorst F. M., van Tol M. J., Meyling F. H., Logtenberg T. Expression pattern of the most JH-proximal human VH gene segment (VH6) in the B cell and antibody repertoire suggests a role of VH6-encoded IgM antibodies in early ontogeny. J Immunol. 1993 Jan 1;150(1):161–168. [PubMed] [Google Scholar]
  38. Varade W. S., Marin E., Kittelberger A. M., Insel R. A. Use of the most JH-proximal human Ig H chain V region gene, VH6, in the expressed immune repertoire. J Immunol. 1993 Jun 1;150(11):4985–4995. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES