Skip to main content
Immunology logoLink to Immunology
. 1996 Jul;88(3):428–440. doi: 10.1046/j.1365-2567.1996.d01-668.x

HL-60 myeloid leukaemia cells acquire immunostimulatory capability upon treatment with retinoic acid: analysis of the responding population and mechanism of cytotoxic lymphocyte activation.

S M Geary 1, L K Ashman 1
PMCID: PMC1456359  PMID: 8774361

Abstract

HL-60 myeloid leukaemia cells are ineffective as stimulators of allogeneic lymphocytes in mixed leucocyte culture (MLC). These cells can be induced to differentiate along the monocytic or granulocytic pathways with or without acquisition of major histocompatibility complex (MHC) class II antigen by various agents. Surprisingly, treatment of HL-60 cells with 10 nM all-trans retinoic acid (RA) for 7 days (HL-60-R7) resulted in a marked increase in MLC stimulation although the cells lacked detectable MHC class II antigen expression at the initiation of the MLC. In contrast, treatment with interferon-gamma (IFN-gamma), with or without RA, induced MHC class II antigen expression but failed to enhance MLC stimulation. Lymphocytes responding to HL-60-R7 were predominantly CD8+ and/or CD16+ and displayed enhanced cytolytic capacity for HL-60 and HL-60-R7 cells as well as natural killer (NK)-sensitive K562 cells. Nevertheless, monoclonal antibodies (mAb) to MHC class II antigens substantially inhibited the MLC and some CD4+ lymphocytes in the responding population were required, although this requirement could be replaced by the addition of interleukin-2 (IL-2). HL-60-R7 (and HL-60) cells were shown to acquire detectable MHC class II antigen expression during the first 3 days of the MLC. Thus a low level of activation by MHC class II+ stimulator cells appears to be required for the response. Analysis of the role of cytokines with costimulatory activity for T cells and/or NK cells indicated that tumour necrosis factor-alpha (TNF-alpha) was important in the proliferative response, while interleukins-1, -6 and -12 and stem cell factor did not seem to be involved. Cell interaction molecules lymphocyte function-associated antigen-1 (LFA-1) (CD11a), intracellular adhesion molecule-1 (ICAM-1) (CD54), ICAM-3 (CD50) and B7.2 (CD86) were up-regulated on HL-60-R7. Blocking mAb to LFA-1 and B7.2 potently inhibited the proliferative response indicating a key role for these molecules in the enhanced immunostimulation by HL-60-R7 cells. The results may have implications for the mechanism of the therapeutic effect of RA in acute promyelocytic leukaemia and may also provide valuable information in regard to the immunogenicity of tumour cells in general.

Full text

PDF
428

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann D. M., Hogg N., Trowsdale J., Wilkinson D. Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature. 1989 Apr 6;338(6215):512–514. doi: 10.1038/338512a0. [DOI] [PubMed] [Google Scholar]
  2. Ashman L. K., Bühring H. J., Aylett G. W., Broudy V. C., Müller C. Epitope mapping and functional studies with three monoclonal antibodies to the c-kit receptor tyrosine kinase, YB5.B8, 17F11, and SR-1. J Cell Physiol. 1994 Mar;158(3):545–554. doi: 10.1002/jcp.1041580321. [DOI] [PubMed] [Google Scholar]
  3. Ashman L. K., Kriek G. W., Cooper S. J., O'Keefe D. E. Requirements for the stimulation of allogeneic T lymphocytes by acute non-lymphoblastic leukaemia cells. Cancer Immunol Immunother. 1987;25(3):250–256. doi: 10.1007/BF00199155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashman L. K. The immunogenicity of tumour cells. Immunol Cell Biol. 1987 Aug;65(Pt 4):271–277. doi: 10.1038/icb.1987.31. [DOI] [PubMed] [Google Scholar]
  5. Boon T. Toward a genetic analysis of tumor rejection antigens. Adv Cancer Res. 1992;58:177–210. doi: 10.1016/s0065-230x(08)60295-x. [DOI] [PubMed] [Google Scholar]
  6. Borthwick N. J., Bofill M., Gombert W. M., Akbar A. N., Medina E., Sagawa K., Lipman M. C., Johnson M. A., Janossy G. Lymphocyte activation in HIV-1 infection. II. Functional defects of CD28- T cells. AIDS. 1994 Apr;8(4):431–441. doi: 10.1097/00002030-199404000-00004. [DOI] [PubMed] [Google Scholar]
  7. Boyd A. W., Wawryk S. O., Burns G. F., Fecondo J. V. Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms. Proc Natl Acad Sci U S A. 1988 May;85(9):3095–3099. doi: 10.1073/pnas.85.9.3095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breitman T. R., Selonick S. E., Collins S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980 May;77(5):2936–2940. doi: 10.1073/pnas.77.5.2936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brichard V., Van Pel A., Wölfel T., Wölfel C., De Plaen E., Lethé B., Coulie P., Boon T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1993 Aug 1;178(2):489–495. doi: 10.1084/jem.178.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Broudy V. C., Lin N., Zsebo K. M., Birkett N. C., Smith K. A., Bernstein I. D., Papayannopoulou T. Isolation and characterization of a monoclonal antibody that recognizes the human c-kit receptor. Blood. 1992 Jan 15;79(2):338–346. [PubMed] [Google Scholar]
  11. Butini L., De Fougerolles A. R., Vaccarezza M., Graziosi C., Cohen D. I., Montroni M., Springer T. A., Pantaleo G., Fauci A. S. Intercellular adhesion molecules (ICAM)-1 ICAM-2 and ICAM-3 function as counter-receptors for lymphocyte function-associated molecule 1 in human immunodeficiency virus-mediated syncytia formation. Eur J Immunol. 1994 Sep;24(9):2191–2195. doi: 10.1002/eji.1830240939. [DOI] [PubMed] [Google Scholar]
  12. Castaigne S., Chomienne C., Daniel M. T., Ballerini P., Berger R., Fenaux P., Degos L. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood. 1990 Nov 1;76(9):1704–1709. [PubMed] [Google Scholar]
  13. Castaigne S., Chomienne C., Daniel M. T., Ballerini P., Berger R., Fenaux P., Degos L. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood. 1990 Nov 1;76(9):1704–1709. [PubMed] [Google Scholar]
  14. Chomienne C., Ballerini P., Balitrand N., Daniel M. T., Fenaux P., Castaigne S., Degos L. All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood. 1990 Nov 1;76(9):1710–1717. [PubMed] [Google Scholar]
  15. Cole S. R., Ashman L. K., Ey P. L. Biotinylation: an alternative to radioiodination for the identification of cell surface antigens in immunoprecipitates. Mol Immunol. 1987 Jul;24(7):699–705. doi: 10.1016/0161-5890(87)90051-4. [DOI] [PubMed] [Google Scholar]
  16. Cole S. R., Aylett G. W., Harvey N. L., Cambareri A. C., Ashman L. K. Increased expression of c-Kit or its ligand Steel Factor is not a common feature of adult acute myeloid leukaemia. Leukemia. 1996 Feb;10(2):288–296. [PubMed] [Google Scholar]
  17. Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
  18. Dalton W. T., Jr, Ahearn M. J., McCredie K. B., Freireich E. J., Stass S. A., Trujillo J. M. HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood. 1988 Jan;71(1):242–247. [PubMed] [Google Scholar]
  19. Fenaux P., Castaigne S., Dombret H., Archimbaud E., Duarte M., Morel P., Lamy T., Tilly H., Guerci A., Maloisel F. All-transretinoic acid followed by intensive chemotherapy gives a high complete remission rate and may prolong remissions in newly diagnosed acute promyelocytic leukemia: a pilot study on 26 cases. Blood. 1992 Nov 1;80(9):2176–2181. [PubMed] [Google Scholar]
  20. Freeman G. J., Gribben J. G., Boussiotis V. A., Ng J. W., Restivo V. A., Jr, Lombard L. A., Gray G. S., Nadler L. M. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993 Nov 5;262(5135):909–911. doi: 10.1126/science.7694363. [DOI] [PubMed] [Google Scholar]
  21. Gallagher R., Collins S., Trujillo J., McCredie K., Ahearn M., Tsai S., Metzgar R., Aulakh G., Ting R., Ruscetti F. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979 Sep;54(3):713–733. [PubMed] [Google Scholar]
  22. Hemmi H., Breitman T. R. Combinations of recombinant human interferons and retinoic acid synergistically induce differentiation of the human promyelocytic leukemia cell line HL-60. Blood. 1987 Feb;69(2):501–507. [PubMed] [Google Scholar]
  23. Horowitz M. M., Gale R. P., Sondel P. M., Goldman J. M., Kersey J., Kolb H. J., Rimm A. A., Ringdén O., Rozman C., Speck B. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990 Feb 1;75(3):555–562. [PubMed] [Google Scholar]
  24. Huang M. E., Ye Y. C., Chen S. R., Chai J. R., Lu J. X., Zhoa L., Gu L. J., Wang Z. Y. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988 Aug;72(2):567–572. [PubMed] [Google Scholar]
  25. Jiang Y. Z., Kanfer E. J., Macdonald D., Cullis J. O., Goldman J. M., Barrett A. J. Graft-versus-leukaemia following allogeneic bone marrow transplantation: emergence of cytotoxic T lymphocytes reacting to host leukaemia cells. Bone Marrow Transplant. 1991 Oct;8(4):253–258. [PubMed] [Google Scholar]
  26. Larson R. A., Kondo K., Vardiman J. W., Butler A. E., Golomb H. M., Rowley J. D. Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am J Med. 1984 May;76(5):827–841. doi: 10.1016/0002-9343(84)90994-x. [DOI] [PubMed] [Google Scholar]
  27. Lee J. C., Truneh A., Smith M. F., Jr, Tsang K. Y. Induction of interleukin 2 receptor (TAC) by tumor necrosis factor in YT cells. J Immunol. 1987 Sep 15;139(6):1935–1938. [PubMed] [Google Scholar]
  28. Lee M., Hirokawa M., Miura A. B. Mechanisms of allogeneic stimulation induced tumor necrosis factor-alpha (TNF-alpha) production. Leuk Res. 1993 Jan;17(1):89–95. doi: 10.1016/0145-2126(93)90145-b. [DOI] [PubMed] [Google Scholar]
  29. Lee S. K., Oliver R. T. Autologous leukemia-specific T-cell-mediated lymphocytotoxicity in patients with acute myelogenous leukemia. J Exp Med. 1978 Mar 1;147(3):912–922. doi: 10.1084/jem.147.3.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Linsley P. S., Greene J. L., Tan P., Bradshaw J., Ledbetter J. A., Anasetti C., Damle N. K. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med. 1992 Dec 1;176(6):1595–1604. doi: 10.1084/jem.176.6.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lowenthal J. W., Ballard D. W., Bogerd H., Böhnlein E., Greene W. C. Tumor necrosis factor-alpha activation of the IL-2 receptor-alpha gene involves the induction of kappa B-specific DNA binding proteins. J Immunol. 1989 May 1;142(9):3121–3128. [PubMed] [Google Scholar]
  32. Nagler A., Lanier L. L., Cwirla S., Phillips J. H. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989 Nov 15;143(10):3183–3191. [PubMed] [Google Scholar]
  33. Nagler A., Lanier L. L., Phillips J. H. Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med. 1990 May 1;171(5):1527–1533. doi: 10.1084/jem.171.5.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Naume B., Espevik T. Effects of IL-7 and IL-2 on highly enriched CD56+ natural killer cells. A comparative study. J Immunol. 1991 Oct 1;147(7):2208–2214. [PubMed] [Google Scholar]
  35. O'Keefe D., Ashman L. Variation in accessory cell requirements in human mixed lymphocyte response to leukaemic cell lines. Immunology. 1982 Dec;47(4):633–641. [PMC free article] [PubMed] [Google Scholar]
  36. Sanchez-Madrid F., Krensky A. M., Ware C. F., Robbins E., Strominger J. L., Burakoff S. J., Springer T. A. Three distinct antigens associated with human T-lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7489–7493. doi: 10.1073/pnas.79.23.7489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Santoli D., Francis M. K., Matera L., Ferrero D. Induction of proliferation and NK activity in human lymphocytes by mature myelomonocytic cells: evidence for an HLA-DR-independent MLR stimulatory ability of terminally differentiated nonlymphoid leukemic cell lines and of normal peripheral blood granulocytes. J Immunol. 1983 Aug;131(2):736–742. [PubMed] [Google Scholar]
  38. Sprent J., Schaefer M. Capacity of purified Lyt-2+ T cells to mount primary proliferative and cytotoxic responses to Ia- tumour cells. Nature. 1986 Aug 7;322(6079):541–544. doi: 10.1038/322541a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stern A. S., Podlaski F. J., Hulmes J. D., Pan Y. C., Quinn P. M., Wolitzky A. G., Familletti P. C., Stremlo D. L., Truitt T., Chizzonite R. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6808–6812. doi: 10.1073/pnas.87.17.6808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Todd R. F., 3rd, Griffin J. D., Ritz J., Nadler L. M., Abrams T., Schlossman S. F. Expression of normal monocyte-macrophage differentiation antigens on HL60 promyelocytes undergoing differentiation induced by leukocyte-conditioned medium or phorbol diester. Leuk Res. 1981;5(6):491–495. doi: 10.1016/0145-2126(81)90119-3. [DOI] [PubMed] [Google Scholar]
  41. Trinchieri G., Kobayashi M., Rosen M., Loudon R., Murphy M., Perussia B. Tumor necrosis factor and lymphotoxin induce differentiation of human myeloid cell lines in synergy with immune interferon. J Exp Med. 1986 Oct 1;164(4):1206–1225. doi: 10.1084/jem.164.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Van den Eynde B., Lethé B., Van Pel A., De Plaen E., Boon T. The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med. 1991 Jun 1;173(6):1373–1384. doi: 10.1084/jem.173.6.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]
  44. Yisraeli J. K., Melton D. A. Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Methods Enzymol. 1989;180:42–50. doi: 10.1016/0076-6879(89)80090-4. [DOI] [PubMed] [Google Scholar]
  45. de Thé H., Chomienne C., Lanotte M., Degos L., Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990 Oct 11;347(6293):558–561. doi: 10.1038/347558a0. [DOI] [PubMed] [Google Scholar]
  46. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES