Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jan 15;24(2):361–366. doi: 10.1093/nar/24.2.361

Photocleavable biotin phosphoramidite for 5'-end-labeling, affinity purification and phosphorylation of synthetic oligonucleotides.

J Olejnik 1, E Krzymańska-Olejnik 1, K J Rothschild 1
PMCID: PMC145639  PMID: 8628663

Abstract

We report the design, synthesis and evaluation of a non-nucleosidic photocleavable biotin phosphoramidite (PCB-phosphoramidite) which provides a simple method for purification and phosphorylation of oligonucleotides. This reagent introduces a photocleavable biotin label (PCB) on the 5'-terminal phosphate of synthetic oligonucleotides and is fully compatible with automated solid support synthesis. HPLC analysis shows that the PCB moiety is introduced predominantly on full-length sequences and is retained during cleavage of the synthetic oligonucleotide from the solid support and during subsequent deprotection with ammonia. The full-length 5-PCB-labeled oligonucleotide can then be selectively isolated from the crude oligonucleotide mixture by incubation with immobilized streptavidin. Upon irradiation with 300-350 nm light the 5'-PCB moiety is cleaved with high efficiency in <4 min, resulting in rapid release of affinity-purified 5'-phosphorylated oligonucleotides into solution. 5'-PCB-labeled oligonucleotides should be useful in a variety of applications in molecular biology, including cassette mutagenesis and PCR. As an example, PCB-phosphoramidite has been used for the synthesis, purification and phosphorylation of 50-and 60mer oligonucleotides.

Full Text

The Full Text of this article is available as a PDF (80.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ausserer W. A., Biros M. L. High-resolution analysis and purification of synthetic oligonucleotides with strong anion-exchange HPLC. Biotechniques. 1995 Jul;19(1):136–139. [PubMed] [Google Scholar]
  2. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):189–193. doi: 10.1073/pnas.88.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen A. S., Najarian D. R., Paulus A., Guttman A., Smith J. A., Karger B. L. Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9660–9663. doi: 10.1073/pnas.85.24.9660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawson B. A., Herman T., Haas A. L., Lough J. Affinity isolation of active murine erythroleukemia cell chromatin: uniform distribution of ubiquitinated histone H2A between active and inactive fractions. J Cell Biochem. 1991 Jun;46(2):166–173. doi: 10.1002/jcb.240460210. [DOI] [PubMed] [Google Scholar]
  5. Dawson B. A., Herman T., Lough J. Affinity isolation of transcriptionally active murine erythroleukemia cell DNA using a cleavable biotinylated nucleotide analog. J Biol Chem. 1989 Aug 5;264(22):12830–12837. [PubMed] [Google Scholar]
  6. Fearon K. L., Stults J. T., Bergot B. J., Christensen L. M., Raible A. M. Investigation of the 'n-1' impurity in phosphorothioate oligodeoxynucleotides synthesized by the solid-phase beta-cyanoethyl phosphoramidite method using stepwise sulfurization. Nucleic Acids Res. 1995 Jul 25;23(14):2754–2761. doi: 10.1093/nar/23.14.2754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forster A. C., McInnes J. L., Skingle D. C., Symons R. H. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res. 1985 Feb 11;13(3):745–761. doi: 10.1093/nar/13.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herman T. M., Lefever E., Shimkus M. Affinity chromatography of DNA labeled with chemically cleavable biotinylated nucleotide analogs. Anal Biochem. 1986 Jul;156(1):48–55. doi: 10.1016/0003-2697(86)90152-1. [DOI] [PubMed] [Google Scholar]
  9. Landegren U., Kaiser R., Sanders J., Hood L. A ligase-mediated gene detection technique. Science. 1988 Aug 26;241(4869):1077–1080. doi: 10.1126/science.3413476. [DOI] [PubMed] [Google Scholar]
  10. Langer P. R., Waldrop A. A., Ward D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. doi: 10.1073/pnas.78.11.6633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McBride L. J., McCollum C., Davidson S., Efcavitch J. W., Andrus A., Lombardi S. J. A new, reliable cartridge for the rapid purification of synthetic DNA. Biotechniques. 1988 Apr;6(4):362–367. [PubMed] [Google Scholar]
  12. Milburn T., Matsubara N., Billington A. P., Udgaonkar J. B., Walker J. W., Carpenter B. K., Webb W. W., Marque J., Denk W., McCray J. A. Synthesis, photochemistry, and biological activity of a caged photolabile acetylcholine receptor ligand. Biochemistry. 1989 Jan 10;28(1):49–55. doi: 10.1021/bi00427a008. [DOI] [PubMed] [Google Scholar]
  13. Misiura K., Durrant I., Evans M. R., Gait M. J. Biotinyl and phosphotyrosinyl phosphoramidite derivatives useful in the incorporation of multiple reporter groups on synthetic oligonucleotides. Nucleic Acids Res. 1990 Aug 11;18(15):4345–4354. doi: 10.1093/nar/18.15.4345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Olejnik J., Sonar S., Krzymañska-Olejnik E., Rothschild K. J. Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7590–7594. doi: 10.1073/pnas.92.16.7590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pieles U., Sproat B. S., Lamm G. M. A protected biotin containing deoxycytidine building block for solid phase synthesis of biotinylated oligonucleotides. Nucleic Acids Res. 1990 Aug 11;18(15):4355–4360. doi: 10.1093/nar/18.15.4355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shimkus M., Levy J., Herman T. A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein-DNA complexes from avidin affinity columns. Proc Natl Acad Sci U S A. 1985 May;82(9):2593–2597. doi: 10.1073/pnas.82.9.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Soukup G. A., Cerny R. L., Maher L. J., 3rd Preparation of oligonucleotide-biotin conjugates with cleavable linkers. Bioconjug Chem. 1995 Jan-Feb;6(1):135–138. doi: 10.1021/bc00031a017. [DOI] [PubMed] [Google Scholar]
  18. Temsamani J., Kubert M., Agrawal S. Sequence identity of the n-1 product of a synthetic oligonucleotide. Nucleic Acids Res. 1995 Jun 11;23(11):1841–1844. doi: 10.1093/nar/23.11.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walker J. W., Reid G. P., Trentham D. R. Synthesis and properties of caged nucleotides. Methods Enzymol. 1989;172:288–301. doi: 10.1016/s0076-6879(89)72019-x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES