Skip to main content
Immunology logoLink to Immunology
. 1996 Jun;88(2):169–173. doi: 10.1111/j.1365-2567.1996.tb00001.x

Human constant regions influence the antibody binding characteristics of mouse-human chimeric IgG subclasses.

N McCloskey 1, M W Turner 1, P Steffner 1, R Owens 1, D Goldblatt 1
PMCID: PMC1456430  PMID: 8690447

Abstract

Although antibody affinity is primarily determined by immunoglobulin variable region structure human IgG antibodies of the four subclasses specific for the same antigen have been shown to differ in their affinity. To explore the influence of the immunoglobulin constant region on functional antibody affinity, a set of V region identical mouse-human chimeric IgG subclasses specific for TAG72 (tumour-associated glycoprotein) were studied. Biomolecular interaction analysis (BIA) was used to determine the binding kinetics of whole IgG subclasses and F(ab')2 fragments. Despite identical V regions, binding kinetics differed for the four subclasses. The apparent dissociation rate constants of the intact immunoglobulins ranked IgG4 < IgG3 < IgG2 < IgG1. In contrast, analysis of the binding characteriztics of the F(ab')2 fragments derived from IgG1, IgG2 and IgG4 revealed identical binding kinetics. The structure of the constant regions of the humanized IgG subclass antibodies clearly influenced functional antibody affinity, as has been described for the murine IgG subclasses. The exact mechanism for this phenomenon remains obscure but such differences should be taken into account when designing or choosing antibodies for therapeutic use.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazin R., Darveau A., Martel F., Pelletier A., Piché L., St-Laurent M., Thibault L., Demers A., Boyer L., Lemieux G. Increased avidity of mutant IgM antibodies caused by the absence of COOH-terminal glycosylation of the mu H chain. J Immunol. 1992 Dec 15;149(12):3889–3893. [PubMed] [Google Scholar]
  2. Callard R. E., Turner M. W. Cytokines and Ig switching: evolutionary divergence between mice and humans. Immunol Today. 1990 Jun;11(6):200–203. doi: 10.1016/0167-5699(90)90082-k. [DOI] [PubMed] [Google Scholar]
  3. Cooper L. J., Robertson D., Granzow R., Greenspan N. S. Variable domain-identical antibodies exhibit IgG subclass-related differences in affinity and kinetic constants as determined by surface plasmon resonance. Mol Immunol. 1994 Jun;31(8):577–584. doi: 10.1016/0161-5890(94)90165-1. [DOI] [PubMed] [Google Scholar]
  4. Cooper L. J., Schimenti J. C., Glass D. D., Greenspan N. S. H chain C domains influence the strength of binding of IgG for streptococcal group A carbohydrate. J Immunol. 1991 Apr 15;146(8):2659–2663. [PubMed] [Google Scholar]
  5. Dangl J. L., Wensel T. G., Morrison S. L., Stryer L., Herzenberg L. A., Oi V. T. Segmental flexibility and complement fixation of genetically engineered chimeric human, rabbit and mouse antibodies. EMBO J. 1988 Jul;7(7):1989–1994. doi: 10.1002/j.1460-2075.1988.tb03037.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devey M. E., Bleasdale-Barr K. M., Bird P., Amlot P. L. Antibodies of different human IgG subclasses show distinct patterns of affinity maturation after immunization with keyhole limpet haemocyanin. Immunology. 1990 Jun;70(2):168–174. [PMC free article] [PubMed] [Google Scholar]
  7. Devey M. E., Bleasdale K. M., French M. A., Harrison G. The IgG4 subclass is associated with a low affinity antibody response to tetanus toxoid in man. Immunology. 1985 Jul;55(3):565–567. [PMC free article] [PubMed] [Google Scholar]
  8. Devey M. E., Bleasdale K., Lee S., Rath S. Determination of the functional affinity of IgG1 and IgG4 antibodies to tetanus toxoid by isotype-specific solid-phase assays. J Immunol Methods. 1988 Jan 21;106(1):119–125. doi: 10.1016/0022-1759(88)90279-7. [DOI] [PubMed] [Google Scholar]
  9. EISEN H. N., SISKIND G. W. VARIATIONS IN AFFINITIES OF ANTIBODIES DURING THE IMMUNE RESPONSE. Biochemistry. 1964 Jul;3:996–1008. doi: 10.1021/bi00895a027. [DOI] [PubMed] [Google Scholar]
  10. Foote J., Milstein C. Kinetic maturation of an immune response. Nature. 1991 Aug 8;352(6335):530–532. doi: 10.1038/352530a0. [DOI] [PubMed] [Google Scholar]
  11. Fulpius T., Spertini F., Reininger L., Izui S. Immunoglobulin heavy chain constant region determines the pathogenicity and the antigen-binding activity of rheumatoid factor. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2345–2349. doi: 10.1073/pnas.90.6.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenspan N. S., Cooper L. J. Intermolecular cooperativity: a clue to why mice have IgG3? Immunol Today. 1992 May;13(5):164–168. doi: 10.1016/0167-5699(92)90120-V. [DOI] [PubMed] [Google Scholar]
  13. Griffiths G. M., Berek C., Kaartinen M., Milstein C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature. 1984 Nov 15;312(5991):271–275. doi: 10.1038/312271a0. [DOI] [PubMed] [Google Scholar]
  14. Hornick C. L., Karuch F. Antibody affinity. 3. The role of multivalance. Immunochemistry. 1972 Mar;9(3):325–340. doi: 10.1016/0019-2791(72)90096-1. [DOI] [PubMed] [Google Scholar]
  15. Karlsson R., Michaelsson A., Mattsson L. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods. 1991 Dec 15;145(1-2):229–240. doi: 10.1016/0022-1759(91)90331-9. [DOI] [PubMed] [Google Scholar]
  16. Malmqvist M. Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics. Curr Opin Immunol. 1993 Apr;5(2):282–286. doi: 10.1016/0952-7915(93)90019-o. [DOI] [PubMed] [Google Scholar]
  17. Morelock M. M., Rothlein R., Bright S. M., Robinson M. K., Graham E. T., Sabo J. P., Owens R., King D. J., Norris S. H., Scher D. S. Isotype choice for chimeric antibodies affects binding properties. J Biol Chem. 1994 Apr 29;269(17):13048–13055. [PubMed] [Google Scholar]
  18. O'Shannessy D. J., Brigham-Burke M., Soneson K. K., Hensley P., Brooks I. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. Anal Biochem. 1993 Aug 1;212(2):457–468. doi: 10.1006/abio.1993.1355. [DOI] [PubMed] [Google Scholar]
  19. Oi V. T., Vuong T. M., Hardy R., Reidler J., Dangle J., Herzenberg L. A., Stryer L. Correlation between segmental flexibility and effector function of antibodies. Nature. 1984 Jan 12;307(5947):136–140. doi: 10.1038/307136a0. [DOI] [PubMed] [Google Scholar]
  20. Pellequer J. L., Van Regenmortel M. H. Measurement of kinetic binding constants of viral antibodies using a new biosensor technology. J Immunol Methods. 1993 Nov 5;166(1):133–143. doi: 10.1016/0022-1759(93)90337-7. [DOI] [PubMed] [Google Scholar]
  21. Persson M. A., Brown S. E., Steward M. W., Hammarström L., Smith C. I., Howard C. R., Wahl M., Rynnel-Dagö B., Lefranc G., Carbonara A. O. IgG subclass-associated affinity differences of specific antibodies in humans. J Immunol. 1988 Jun 1;140(11):3875–3879. [PubMed] [Google Scholar]
  22. Schneider W. P., Wensel T. G., Stryer L., Oi V. T. Genetically engineered immunoglobulins reveal structural features controlling segmental flexibility. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2509–2513. doi: 10.1073/pnas.85.8.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schreiber J. R., Cooper L. J., Diehn S., Dahlhauser P. A., Tosi M. F., Glass D. D., Patawaran M., Greenspan N. S. Variable region-identical monoclonal antibodies of different IgG subclass directed to Pseudomonas aeruginosa lipopolysaccharide O-specific side chain function differently. J Infect Dis. 1993 Jan;167(1):221–226. doi: 10.1093/infdis/167.1.221. [DOI] [PubMed] [Google Scholar]
  24. Tan L. K., Shopes R. J., Oi V. T., Morrison S. L. Influence of the hinge region on complement activation, C1q binding, and segmental flexibility in chimeric human immunoglobulins. Proc Natl Acad Sci U S A. 1990 Jan;87(1):162–166. doi: 10.1073/pnas.87.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. VanCott T. C., Bethke F. R., Polonis V. R., Gorny M. K., Zolla-Pazner S., Redfield R. R., Birx D. L. Dissociation rate of antibody-gp120 binding interactions is predictive of V3-mediated neutralization of HIV-1. J Immunol. 1994 Jul 1;153(1):449–459. [PubMed] [Google Scholar]
  26. Whittle N., Adair J., Lloyd C., Jenkins L., Devine J., Schlom J., Raubitschek A., Colcher D., Bodmer M. Expression in COS cells of a mouse-human chimaeric B72.3 antibody. Protein Eng. 1987 Dec;1(6):499–505. doi: 10.1093/protein/1.6.499. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES