Skip to main content
Immunology logoLink to Immunology
. 1996 May;88(1):76–81. doi: 10.1046/j.1365-2567.1996.d01-635.x

Thrombin stimulates production of interleukin-8 in human umbilical vein endothelial cells.

A Ueno 1, K Murakami 1, K Yamanouchi 1, M Watanabe 1, T Kondo 1
PMCID: PMC1456474  PMID: 8707354

Abstract

Interleukin-8 (IL-8) is regarded as an important mediator of inflammation because of its potent and specific chemotactic activity on neutrophils. In the present investigation, human umbilical vein endothelial cells (HUVEC) stimulated with thrombin were found to produce IL-8, in a dose- and time-dependent manner. After stimulation with 10 U/ml thrombin for 24 hr, the level of IL-8 in the conditioned medium was 14 ng/ml, or enough to elicit PMN chemotaxis in vitro. Northern blot analysis revealed that thrombin as well as IL-1 beta elevates the level of IL-8 mRNA preceding the formation of IL-8 protein. A synthetic peptide SFLLRN [human thrombin receptor-activating peptide (TRAP)] was found to mimic the action of thrombin. Preincubation with anti-thrombin compounds such as hirudin and antithrombin-III-heparin almost completely suppressed the action of thrombin without affecting the actions of other stimuli including IL-1 beta, phorbol 12-myristate 13-acetate (PMA) and TRAP. Diisopropylfluorophosphate-treated thrombin did not stimulate IL-8 production. Calphostin-C, a protein kinase C (PKC) inhibitor, attenuated the production of IL-8 by thrombin, TRAP and PMA, but left the action of IL-1 beta unchanged. These results strongly suggest that catalytic activation of thrombin receptor by thrombin results in PKC-dependent IL-8 production accompanied by an increase in IL-8 mRNA level.

Full text

PDF
76

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albelda S. M., Smith C. W., Ward P. A. Adhesion molecules and inflammatory injury. FASEB J. 1994 May;8(8):504–512. [PubMed] [Google Scholar]
  2. Aruffo A., Kolanus W., Walz G., Fredman P., Seed B. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell. 1991 Oct 4;67(1):35–44. doi: 10.1016/0092-8674(91)90570-o. [DOI] [PubMed] [Google Scholar]
  3. Bosco M. C., Gusella G. L., Espinoza-Delgado I., Longo D. L., Varesio L. Interferon-gamma upregulates interleukin-8 gene expression in human monocytic cells by a posttranscriptional mechanism. Blood. 1994 Jan 15;83(2):537–542. [PubMed] [Google Scholar]
  4. Chedid M., Mizel S. B. Involvement of cyclic AMP-dependent protein kinases in the signal transduction pathway for interleukin-1. Mol Cell Biol. 1990 Jul;10(7):3824–3827. doi: 10.1128/mcb.10.7.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Dobson P. R., Skjodt H., Plested C. P., Short A. D., Virdee K., Russell R. G., Brown B. L. Interleukin-1 stimulates diglyceride accumulation in the absence of protein kinase C activation. Regul Pept. 1990 Jul 30;29(2-3):109–116. doi: 10.1016/0167-0115(90)90074-7. [DOI] [PubMed] [Google Scholar]
  7. Ferrante A., Thong Y. H. Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leucocytes from human blood by the Hypaque-Ficoll method. J Immunol Methods. 1980;36(2):109–117. doi: 10.1016/0022-1759(80)90036-8. [DOI] [PubMed] [Google Scholar]
  8. Hartung H. P., Schäfer B., Heininger K., Toyka K. V. Recombinant interleukin-1 beta stimulates eicosanoid production in rat primary culture astrocytes. Brain Res. 1989 Jun 5;489(1):113–119. doi: 10.1016/0006-8993(89)90013-9. [DOI] [PubMed] [Google Scholar]
  9. Harvath L., Falk W., Leonard E. J. Rapid quantitation of neutrophil chemotaxis: use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J Immunol Methods. 1980;37(1):39–45. doi: 10.1016/0022-1759(80)90179-9. [DOI] [PubMed] [Google Scholar]
  10. Heller R., Bussolino F., Ghigo D., Garbarino G., Schröder H., Pescarmona G., Till U., Bosia A. Protein kinase C and cyclic AMP modulate thrombin-induced platelet-activating factor synthesis in human endothelial cells. Biochim Biophys Acta. 1991 Jun 7;1093(1):55–64. doi: 10.1016/0167-4889(91)90138-n. [DOI] [PubMed] [Google Scholar]
  11. Hung D. T., Vu T. H., Nelken N. A., Coughlin S. R. Thrombin-induced events in non-platelet cells are mediated by the unique proteolytic mechanism established for the cloned platelet thrombin receptor. J Cell Biol. 1992 Feb;116(3):827–832. doi: 10.1083/jcb.116.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hébert C. A., Luscinskas F. W., Kiely J. M., Luis E. A., Darbonne W. C., Bennett G. L., Liu C. C., Obin M. S., Gimbrone M. A., Jr, Baker J. B. Endothelial and leukocyte forms of IL-8. Conversion by thrombin and interactions with neutrophils. J Immunol. 1990 Nov 1;145(9):3033–3040. [PubMed] [Google Scholar]
  13. Kapp A., Luger T. A., Maly F. E., Schöpf E. Granulocyte-activating mediators (GRAM): I. Generation by lipopolysaccharide-stimulated mononuclear cells. J Invest Dermatol. 1986 May;86(5):523–528. doi: 10.1111/1523-1747.ep12354953. [DOI] [PubMed] [Google Scholar]
  14. Kowalski J., Denhardt D. T. Regulation of the mRNA for monocyte-derived neutrophil-activating peptide in differentiating HL60 promyelocytes. Mol Cell Biol. 1989 May;9(5):1946–1957. doi: 10.1128/mcb.9.5.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kunkel S. L., Strieter R. M., Chensue S. W., Basha M., Standiford T., Ham J., Remick D. G. Tumor necrosis factor-alpha, interleukin-8 and chemotactic cytokines. Prog Clin Biol Res. 1990;349:433–444. [PubMed] [Google Scholar]
  16. Lindley I., Aschauer H., Seifert J. M., Lam C., Brunowsky W., Kownatzki E., Thelen M., Peveri P., Dewald B., von Tscharner V. Synthesis and expression in Escherichia coli of the gene encoding monocyte-derived neutrophil-activating factor: biological equivalence between natural and recombinant neutrophil-activating factor. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9199–9203. doi: 10.1073/pnas.85.23.9199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nourshargh S., Perkins J. A., Showell H. J., Matsushima K., Williams T. J., Collins P. D. A comparative study of the neutrophil stimulatory activity in vitro and pro-inflammatory properties in vivo of 72 amino acid and 77 amino acid IL-8. J Immunol. 1992 Jan 1;148(1):106–111. [PubMed] [Google Scholar]
  18. Scarborough R. M., Naughton M. A., Teng W., Hung D. T., Rose J., Vu T. K., Wheaton V. I., Turck C. W., Coughlin S. R. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1992 Jul 5;267(19):13146–13149. [PubMed] [Google Scholar]
  19. Shankar R., de la Motte C. A., Poptic E. J., DiCorleto P. E. Thrombin receptor-activating peptides differentially stimulate platelet-derived growth factor production, monocytic cell adhesion, and E-selectin expression in human umbilical vein endothelial cells. J Biol Chem. 1994 May 13;269(19):13936–13941. [PubMed] [Google Scholar]
  20. Sica A., Matsushima K., Van Damme J., Wang J. M., Polentarutti N., Dejana E., Colotta F., Mantovani A. IL-1 transcriptionally activates the neutrophil chemotactic factor/IL-8 gene in endothelial cells. Immunology. 1990 Apr;69(4):548–553. [PMC free article] [PubMed] [Google Scholar]
  21. Stasek J. E., Jr, Garcia J. G. The role of protein kinase C in alpha-thrombin-mediated endothelial cell activation. Semin Thromb Hemost. 1992 Jan;18(1):117–125. doi: 10.1055/s-2007-1002416. [DOI] [PubMed] [Google Scholar]
  22. Strieter R. M., Kunkel S. L., Showell H. J., Remick D. G., Phan S. H., Ward P. A., Marks R. M. Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-alpha, LPS, and IL-1 beta. Science. 1989 Mar 17;243(4897):1467–1469. doi: 10.1126/science.2648570. [DOI] [PubMed] [Google Scholar]
  23. Sugama Y., Tiruppathi C., offakidevi K., Andersen T. T., Fenton J. W., 2nd, Malik A. B. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol. 1992 Nov;119(4):935–944. doi: 10.1083/jcb.119.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tollefsen D. M., Majerus P. W. Evidence for a single class of thrombin-binding sites of human platelets. Biochemistry. 1976 May 18;15(10):2144–2149. doi: 10.1021/bi00655a018. [DOI] [PubMed] [Google Scholar]
  25. Vaporciyan A. A., DeLisser H. M., Yan H. C., Mendiguren I. I., Thom S. R., Jones M. L., Ward P. A., Albelda S. M. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science. 1993 Dec 3;262(5139):1580–1582. doi: 10.1126/science.8248808. [DOI] [PubMed] [Google Scholar]
  26. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  27. Walz A., Peveri P., Aschauer H., Baggiolini M. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun. 1987 Dec 16;149(2):755–761. doi: 10.1016/0006-291x(87)90432-3. [DOI] [PubMed] [Google Scholar]
  28. Willems J., Joniau M., Cinque S., van Damme J. Human granulocyte chemotactic peptide (IL-8) as a specific neutrophil degranulator: comparison with other monokines. Immunology. 1989 Aug;67(4):540–542. [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES