Abstract
Several gene products are involved in co-translational insertion of selenocysteine by the tRNA(Sec). In addition, a stem-loop structure in the mRNAs coding for selenoproteins is essential to mediate the selection of the proper selenocysteine UGA codon. Interestingly, in eukaryotic selenoprotein mRNAs, this stem-loop structure, the selenocysteine insertion sequence (SECIS) element, resides in the 3'-untranslated region, far downstream of the UGA codon. In view of unravelling the underlying complex mechanism, we have attempted to detect RNA-binding proteins with specificity for the SECIS element. Using mobility shift assays, we could show that a protein, present in different types of mammalian cell extracts, possesses the capacity of binding the SECIS element of the selenoprotein glutathione peroxidase (GPx) mRNA. We have termed this protein SBP, for Secis Binding Protein. Competition experiments attested that the binding is highly specific and UV cross-linking indicated that the protein has an apparent molecular weight in the range of 60-65 kDa. Finally, some data suggest that the SECIS elements in the mRNAs of GPx and another selenoprotein, type I iodothyronine 5' deiodinase, recognize the same SBP protein. This constitutes the first report of the existence of a 3' UTR binding protein possibly involved in the eukaryotic selenocysteine insertion mechanism.
Full Text
The Full Text of this article is available as a PDF (112.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baron C., Heider J., Böck A. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4181–4185. doi: 10.1073/pnas.90.9.4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baron C., Westhof E., Böck A., Giegé R. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser). J Mol Biol. 1993 May 20;231(2):274–292. doi: 10.1006/jmbi.1993.1282. [DOI] [PubMed] [Google Scholar]
- Berry M. J., Banu L., Chen Y. Y., Mandel S. J., Kieffer J. D., Harney J. W., Larsen P. R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature. 1991 Sep 19;353(6341):273–276. doi: 10.1038/353273a0. [DOI] [PubMed] [Google Scholar]
- Berry M. J., Banu L., Harney J. W., Larsen P. R. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 1993 Aug;12(8):3315–3322. doi: 10.1002/j.1460-2075.1993.tb06001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry M. J., Banu L., Larsen P. R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature. 1991 Jan 31;349(6308):438–440. doi: 10.1038/349438a0. [DOI] [PubMed] [Google Scholar]
- Decker C. J., Parker R. Diversity of cytoplasmic functions for the 3' untranslated region of eukaryotic transcripts. Curr Opin Cell Biol. 1995 Jun;7(3):386–392. doi: 10.1016/0955-0674(95)80094-8. [DOI] [PubMed] [Google Scholar]
- Dignam J. D., Martin P. L., Shastry B. S., Roeder R. G. Eukaryotic gene transcription with purified components. Methods Enzymol. 1983;101:582–598. doi: 10.1016/0076-6879(83)01039-3. [DOI] [PubMed] [Google Scholar]
- Forchhammer K., Böck A. Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. J Biol Chem. 1991 Apr 5;266(10):6324–6328. [PubMed] [Google Scholar]
- Forchhammer K., Leinfelder W., Boesmiller K., Veprek B., Böck A. Selenocysteine synthase from Escherichia coli. Nucleotide sequence of the gene (selA) and purification of the protein. J Biol Chem. 1991 Apr 5;266(10):6318–6323. [PubMed] [Google Scholar]
- Forchhammer K., Leinfelder W., Böck A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature. 1989 Nov 23;342(6248):453–456. doi: 10.1038/342453a0. [DOI] [PubMed] [Google Scholar]
- Gelpi C., Sontheimer E. J., Rodriguez-Sanchez J. L. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9739–9743. doi: 10.1073/pnas.89.20.9739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass R. S., Singh W. P., Jung W., Veres Z., Scholz T. D., Stadtman T. C. Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry. 1993 Nov 30;32(47):12555–12559. doi: 10.1021/bi00210a001. [DOI] [PubMed] [Google Scholar]
- Hill K. E., Lloyd R. S., Burk R. F. Conserved nucleotide sequences in the open reading frame and 3' untranslated region of selenoprotein P mRNA. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):537–541. doi: 10.1073/pnas.90.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho Y. S., Howard A. J., Crapo J. D. Nucleotide sequence of a rat glutathione peroxidase cDNA. Nucleic Acids Res. 1988 Jun 10;16(11):5207–5207. doi: 10.1093/nar/16.11.5207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jung J. E., Karoor V., Sandbaken M. G., Lee B. J., Ohama T., Gesteland R. F., Atkins J. F., Mullenbach G. T., Hill K. E., Wahba A. J. Utilization of selenocysteyl-tRNA[Ser]Sec and seryl-tRNA[Ser]Sec in protein synthesis. J Biol Chem. 1994 Nov 25;269(47):29739–29745. [PubMed] [Google Scholar]
- Kim I. Y., Stadtman T. C. Selenophosphate synthetase: detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7710–7713. doi: 10.1073/pnas.92.17.7710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee B. J., Worland P. J., Davis J. N., Stadtman T. C., Hatfield D. L. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem. 1989 Jun 15;264(17):9724–9727. [PubMed] [Google Scholar]
- Leinfelder W., Forchhammer K., Zinoni F., Sawers G., Mandrand-Berthelot M. A., Böck A. Escherichia coli genes whose products are involved in selenium metabolism. J Bacteriol. 1988 Feb;170(2):540–546. doi: 10.1128/jb.170.2.540-546.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low S. C., Harney J. W., Berry M. J. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem. 1995 Sep 15;270(37):21659–21664. doi: 10.1074/jbc.270.37.21659. [DOI] [PubMed] [Google Scholar]
- McCarthy J. E., Kollmus H. Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends Biochem Sci. 1995 May;20(5):191–197. doi: 10.1016/s0968-0004(00)89006-4. [DOI] [PubMed] [Google Scholar]
- Mizutani T., Kurata H., Yamada K., Totsuka T. Some properties of murine selenocysteine synthase. Biochem J. 1992 Jun 15;284(Pt 3):827–834. doi: 10.1042/bj2840827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizutani T. Some evidence of the enzymatic conversion of bovine suppressor phosphoseryl-tRNA to selenocysteyl-tRNA. FEBS Lett. 1989 Jul 3;250(2):142–146. doi: 10.1016/0014-5793(89)80707-0. [DOI] [PubMed] [Google Scholar]
- PITOT H. C., PERAINO C., MORSE P. A., Jr, POTTER V. R. HEPATOMAS IN TISSUE CULTURE COMPARED WITH ADAPTING LIVER IN VIVO. Natl Cancer Inst Monogr. 1964 Apr;13:229–245. [PubMed] [Google Scholar]
- Shen Q., Chu F. F., Newburger P. E. Sequences in the 3'-untranslated region of the human cellular glutathione peroxidase gene are necessary and sufficient for selenocysteine incorporation at the UGA codon. J Biol Chem. 1993 May 25;268(15):11463–11469. [PubMed] [Google Scholar]
- Shen Q., Leonard J. L., Newburger P. E. Structure and function of the selenium translation element in the 3'-untranslated region of human cellular glutathione peroxidase mRNA. RNA. 1995 Jul;1(5):519–525. [PMC free article] [PubMed] [Google Scholar]
- Sturchler-Pierrat C., Hubert N., Totsuka T., Mizutani T., Carbon P., Krol A. Selenocysteylation in eukaryotes necessitates the uniquely long aminoacyl acceptor stem of selenocysteine tRNA(Sec). J Biol Chem. 1995 Aug 4;270(31):18570–18574. doi: 10.1074/jbc.270.31.18570. [DOI] [PubMed] [Google Scholar]
- Sturchler C., Westhof E., Carbon P., Krol A. Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNA(Sec). Nucleic Acids Res. 1993 Mar 11;21(5):1073–1079. doi: 10.1093/nar/21.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ursini F., Maiorino M., Brigelius-Flohé R., Aumann K. D., Roveri A., Schomburg D., Flohé L. Diversity of glutathione peroxidases. Methods Enzymol. 1995;252:38–53. doi: 10.1016/0076-6879(95)52007-4. [DOI] [PubMed] [Google Scholar]
- Veres Z., Kim I. Y., Scholz T. D., Stadtman T. C. Selenophosphate synthetase. Enzyme properties and catalytic reaction. J Biol Chem. 1994 Apr 8;269(14):10597–10603. [PubMed] [Google Scholar]
- Yamada K., Mizutani T., Ejiri S., Totsuka T. A factor protecting mammalian [75Se]SeCys-tRNA is different from EF-1 alpha. FEBS Lett. 1994 Jun 27;347(2-3):137–142. doi: 10.1016/0014-5793(94)00523-0. [DOI] [PubMed] [Google Scholar]