Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Feb 1;24(3):411–417. doi: 10.1093/nar/24.3.411

Enhanced activity of an antisense oligonucleotide targeting murine protein kinase C-alpha by the incorporation of 2'-O-propyl modifications.

R A McKay 1, L L Cummins 1, M J Graham 1, E A Lesnik 1, S R Owens 1, M Winniman 1, N M Dean 1
PMCID: PMC145662  PMID: 8602351

Abstract

We have previously described the characterization of a 20mer phosphorothioate oligodeoxynucleotide (ISIS 4189) which inhibits murine protein kinase C-alpha (PKC-alpha) gene expression, both in vitro and in vivo. In an effort to increase the antisense activity of this oligonucleotide, 2'-O-propyl modifications have been incorporated into the 5'- and 3'-ends of the oligonucleotide, with the eight central bases left as phosphorothioate oligodeoxynucleotides. Hybridization analysis demonstrated that these modifications increased affinity by approximately 8 and 6 degrees C per oligonucleotide for the phosphodiester (ISIS 7815) and phosphorothioate (ISIS 7817) respectively when hybridized to an RNA complement. In addition, 2'-O-propyl incorporation greatly enhanced the nuclease resistance of the oligonucleotides to snake venom phosphodiesterase or intracellular nucleases in vivo. The increase in affinity and nuclease stability of ISIS 7817 resulted in a 5-fold increase in the ability of the oligonucleotide to inhibit PKC-alpha gene expression in murine C127 cells, as compared with the parent phosphorothioate oligodeoxynucleotide. Thus an RNase H-dependent phosphorothioate oligodeoxynucleotide can be modified as a 2'-O-propyl 'chimeric' oligonucleotide to provide a significant increase in antisense activity in cell culture.

Full Text

The Full Text of this article is available as a PDF (147.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal S., Mayrand S. H., Zamecnik P. C., Pederson T. Site-specific excision from RNA by RNase H and mixed-phosphate-backbone oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1401–1405. doi: 10.1073/pnas.87.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agrawal S., Temsamani J., Tang J. Y. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7595–7599. doi: 10.1073/pnas.88.17.7595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballester R., Rosen O. M. Fate of immunoprecipitable protein kinase C in GH3 cells treated with phorbol 12-myristate 13-acetate. J Biol Chem. 1985 Dec 5;260(28):15194–15199. [PubMed] [Google Scholar]
  4. Borner C., Eppenberger U., Wyss R., Fabbro D. Continuous synthesis of two protein-kinase-C-related proteins after down-regulation by phorbol esters. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2110–2114. doi: 10.1073/pnas.85.7.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruin G. J., Börnsen K. O., Hüsken D., Gassmann E., Widmer H. M., Paulus A. Stability measurements of antisense oligonucleotides by capillary gel electrophoresis. J Chromatogr A. 1995 Aug 11;709(1):181–195. doi: 10.1016/0021-9673(95)00231-b. [DOI] [PubMed] [Google Scholar]
  6. Campbell J. M., Bacon T. A., Wickstrom E. Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods. 1990 Mar;20(3):259–267. doi: 10.1016/0165-022x(90)90084-p. [DOI] [PubMed] [Google Scholar]
  7. Cazenave C., Chevrier M., Nguyen T. T., Hélène C. Rate of degradation of [alpha]- and [beta]-oligodeoxynucleotides in Xenopus oocytes. Implications for anti-messenger strategies. Nucleic Acids Res. 1987 Dec 23;15(24):10507–10521. doi: 10.1093/nar/15.24.10507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crooke S. T. Therapeutic applications of oligonucleotides. Annu Rev Pharmacol Toxicol. 1992;32:329–376. doi: 10.1146/annurev.pa.32.040192.001553. [DOI] [PubMed] [Google Scholar]
  9. Cummins L. L., Owens S. R., Risen L. M., Lesnik E. A., Freier S. M., McGee D., Guinosso C. J., Cook P. D. Characterization of fully 2'-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1995 Jun 11;23(11):2019–2024. doi: 10.1093/nar/23.11.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dean N. M., McKay R., Condon T. P., Bennett C. F. Inhibition of protein kinase C-alpha expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J Biol Chem. 1994 Jun 10;269(23):16416–16424. [PubMed] [Google Scholar]
  11. Dean N. M., McKay R. Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11762–11766. doi: 10.1073/pnas.91.24.11762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giles R. V., Tidd D. M. Enhanced RNase H activity with methylphosphonodiester/phosphodiester chimeric antisense oligodeoxynucleotides. Anticancer Drug Des. 1992 Feb;7(1):37–48. [PubMed] [Google Scholar]
  13. Inoue H., Hayase Y., Iwai S., Ohtsuka E. Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. FEBS Lett. 1987 May 11;215(2):327–330. doi: 10.1016/0014-5793(87)80171-0. [DOI] [PubMed] [Google Scholar]
  14. Iribarren A. M., Sproat B. S., Neuner P., Sulston I., Ryder U., Lamond A. I. 2'-O-alkyl oligoribonucleotides as antisense probes. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7747–7751. doi: 10.1073/pnas.87.19.7747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lamond A. I., Sproat B. S. Antisense oligonucleotides made of 2'-O-alkylRNA: their properties and applications in RNA biochemistry. FEBS Lett. 1993 Jun 28;325(1-2):123–127. doi: 10.1016/0014-5793(93)81427-2. [DOI] [PubMed] [Google Scholar]
  16. Lesnik E. A., Guinosso C. J., Kawasaki A. M., Sasmor H., Zounes M., Cummins L. L., Ecker D. J., Cook P. D., Freier S. M. Oligodeoxynucleotides containing 2'-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. Biochemistry. 1993 Aug 3;32(30):7832–7838. doi: 10.1021/bi00081a031. [DOI] [PubMed] [Google Scholar]
  17. Matsukura M., Shinozuka K., Zon G., Mitsuya H., Reitz M., Cohen J. S., Broder S. Phosphorothioate analogs of oligodeoxynucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7706–7710. doi: 10.1073/pnas.84.21.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller P. S. Oligonucleoside methylphosphonates as antisense reagents. Biotechnology (N Y) 1991 Apr;9(4):358–362. doi: 10.1038/nbt0491-358. [DOI] [PubMed] [Google Scholar]
  19. Miller P. S., Ts'o P. O. A new approach to chemotherapy based on molecular biology and nucleic acid chemistry: Matagen (masking tape for gene expression). Anticancer Drug Des. 1987 Oct;2(2):117–128. [PubMed] [Google Scholar]
  20. Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
  21. Sands H., Gorey-Feret L. J., Cocuzza A. J., Hobbs F. W., Chidester D., Trainor G. L. Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharmacol. 1994 May;45(5):932–943. [PubMed] [Google Scholar]
  22. Shibahara S., Mukai S., Morisawa H., Nakashima H., Kobayashi S., Yamamoto N. Inhibition of human immunodeficiency virus (HIV-1) replication by synthetic oligo-RNA derivatives. Nucleic Acids Res. 1989 Jan 11;17(1):239–252. doi: 10.1093/nar/17.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  24. Stein C. A., Tonkinson J. L., Yakubov L. Phosphorothioate oligodeoxynucleotides--anti-sense inhibitors of gene expression? Pharmacol Ther. 1991 Dec;52(3):365–384. doi: 10.1016/0163-7258(91)90032-h. [DOI] [PubMed] [Google Scholar]
  25. Temsamani J., Tang J. Y., Padmapriya A., Kubert M., Agrawal S. Pharmacokinetics, biodistribution, and stability of capped oligodeoxynucleotide phosphorothioates in mice. Antisense Res Dev. 1993 Fall;3(3):277–284. doi: 10.1089/ard.1993.3.277. [DOI] [PubMed] [Google Scholar]
  26. Wickstrom E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods. 1986 Sep;13(2):97–102. doi: 10.1016/0165-022x(86)90021-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES