Abstract
Urodele amphibians have weak and slow immune responses compared to mammals and anuran amphibians. Using new culture conditions, we tested the ability of lymphocytes of a well-studied salamander, the Mexican axolotl (Ambystoma mexicanum) to proliferate in vitro with diverse mitogenic agents. We demonstrated that the axolotl has a population of B lymphocytes that proliferate specifically and with a high stimulation index to the lipopolysaccharide (LPS) known as a B-cell mitogen in mammals. This proliferative capacity is observed without significant changes throughout ontogenesis. In the presence of LPS, axolotl B lymphocytes are able to synthesize and secrete both isotopes of immunoglobulin described in this species, IgM and IgY. Moreover, a distinct lymphocyte subpopulation is able to poliferate significantly in response to the mitogens usually known as T-cell specific in mammals, phytohaemagglutinin (PHA) and concanavalin A (Con A). The activated cells are T lymphocytes, as shown by depletion experiments performed in vitro with monoclonal antibodies, and in vivo by thymectomy. Splenic T lymphocytes of young axolotls (before 10 months) do not have this functional ability, which suggests maturation and/or migration phenomena during T-cell ontogenesis in this species. Axolotl lymphocytes are able to proliferate in vitro with a significant stimulation index to staphylococcal enterotoxins A and B (SEA and SEB). These products act on mammalian lymphocytes as superantigens: in combination with products of the major histocompatibility complex (MHC), they bind T-cell receptors with particular V beta elements. The fact that these superantigens are able to activate lymphocytes of a primitive vertebrate suggests a striking conservation of molecular structures implied in superantigen presentation and recognition.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bucala R. Polyclonal activation of B lymphocytes by lipopolysaccharide requires macrophage-derived interleukin-1. Immunology. 1992 Dec;77(4):477–482. [PMC free article] [PubMed] [Google Scholar]
- Chardin H., Vilain C., Charlemagne J. Characterization of axolotl heavy and light immunoglobulin chains by monoclonal antibodies. Hybridoma. 1987 Dec;6(6):627–635. doi: 10.1089/hyb.1987.6.627. [DOI] [PubMed] [Google Scholar]
- Charlemagne J., Tournefier Humoral response to Salmonella typhimurium antigens in normal and thymectomized urodele amphibian Pleurodeles waltlii Michah. Eur J Immunol. 1977 Jul;7(7):500–502. doi: 10.1002/eji.1830070719. [DOI] [PubMed] [Google Scholar]
- Clem L. W., Faulmann E., Miller N. W., Ellsaesser C., Lobb C. J., Cuchens M. A. Temperature-mediated processes in teleost immunity: differential effects of in vitro and in vivo temperatures on mitogenic responses of channel catfish lymphocytes. Dev Comp Immunol. 1984 Spring;8(2):313–322. doi: 10.1016/0145-305x(84)90038-7. [DOI] [PubMed] [Google Scholar]
- Coffman R. L., Seymour B. W., Lebman D. A., Hiraki D. D., Christiansen J. A., Shrader B., Cherwinski H. M., Savelkoul H. F., Finkelman F. D., Bond M. W. The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol Rev. 1988 Feb;102:5–28. doi: 10.1111/j.1600-065x.1988.tb00739.x. [DOI] [PubMed] [Google Scholar]
- Du Pasquier L., Schwager J., Flajnik M. F. The immune system of Xenopus. Annu Rev Immunol. 1989;7:251–275. doi: 10.1146/annurev.iy.07.040189.001343. [DOI] [PubMed] [Google Scholar]
- Fellah J. S., Charlemagne J. Characterization of an IgY-like low molecular weight immunoglobulin class in the Mexican axolotl. Mol Immunol. 1988 Dec;25(12):1377–1386. doi: 10.1016/0161-5890(88)90054-5. [DOI] [PubMed] [Google Scholar]
- Fellah J. S., Jacques C., Charlemagne J. Characterization of immunoglobulin heavy chain variable regions in the Mexican axolotl. Immunogenetics. 1994;39(3):201–206. doi: 10.1007/BF00241261. [DOI] [PubMed] [Google Scholar]
- Fellah J. S., Kerfourn F., Guillet F., Charlemagne J. Conserved structure of amphibian T-cell antigen receptor beta chain. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6811–6814. doi: 10.1073/pnas.90.14.6811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fellah J. S., Kerfourn F., Wiles M. V., Schwager J., Charlemagne J. Phylogeny of immunoglobulin heavy chain isotypes: structure of the constant region of Ambystoma mexicanum upsilon chain deduced from cDNA sequence. Immunogenetics. 1993;38(5):311–317. doi: 10.1007/BF00210471. [DOI] [PubMed] [Google Scholar]
- Fellah J. S., Vaulot D., Tournefier A., Charlemagne J. Ontogeny of immunoglobulin expression in the Mexican axolotl. Development. 1989 Oct;107(2):253–263. doi: 10.1242/dev.107.2.253. [DOI] [PubMed] [Google Scholar]
- Fellah J. S., Wiles M. V., Charlemagne J., Schwager J. Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum mu chain deduced from cDNA sequence. Eur J Immunol. 1992 Oct;22(10):2595–2601. doi: 10.1002/eji.1830221019. [DOI] [PubMed] [Google Scholar]
- Goodwin J. S., Bankhurst A. D., Messner R. P. Suppression of human T-cell mitogenesis by prostaglandin. Existence of a prostaglandin-producing suppressor cell. J Exp Med. 1977 Dec 1;146(6):1719–1734. doi: 10.1084/jem.146.6.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufman J., Völk H., Wallny H. J. A "minimal essential Mhc" and an "unrecognized Mhc": two extremes in selection for polymorphism. Immunol Rev. 1995 Feb;143:63–88. doi: 10.1111/j.1600-065x.1995.tb00670.x. [DOI] [PubMed] [Google Scholar]
- Kerfourn F., Guillet F., Charlemagne J., Tournefier A. T-cell-specific membrane antigens in the Mexican axolotl (urodele amphibian). Dev Immunol. 1992;2(3):237–248. doi: 10.1155/1992/76201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koniski A. D., Cohen N. Reproducible proliferative responses of salamander (Ambystoma mexicanum) lymphocytes cultured with mitogens in serum-free medium. Dev Comp Immunol. 1992 Nov-Dec;16(6):441–451. doi: 10.1016/0145-305x(92)90028-b. [DOI] [PubMed] [Google Scholar]
- Koniski A., Cohen N. Mitogen-activated axolotl (Ambystoma mexicanum) splenocytes produce a cytokine that promotes growth of homologous lymphoblasts. Dev Comp Immunol. 1994 May-Jun;18(3):239–250. doi: 10.1016/0145-305x(94)90016-7. [DOI] [PubMed] [Google Scholar]
- Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 May 11;248(4956):705–711. doi: 10.1126/science.2185544. [DOI] [PubMed] [Google Scholar]
- Mollick J. A., Cook R. G., Rich R. R. Class II MHC molecules are specific receptors for staphylococcus enterotoxin A. Science. 1989 May 19;244(4906):817–820. doi: 10.1126/science.2658055. [DOI] [PubMed] [Google Scholar]
- Pink J. R., Vainio O. Genetic control of the response of chicken T lymphocytes to concanavalin A: cellular localization of the low responder defect. Eur J Immunol. 1983 Jul;13(7):571–575. doi: 10.1002/eji.1830130711. [DOI] [PubMed] [Google Scholar]
- Radvanyi L. G., Mills G. B., Miller R. G. Religation of the T cell receptor after primary activation of mature T cells inhibits proliferation and induces apoptotic cell death. J Immunol. 1993 Jun 15;150(12):5704–5715. [PubMed] [Google Scholar]
- Rosenberg-Wiser S., Avtalion R. R. The cells involved in the immune response of fish. III. Culture requirements of PHA-stimulated carp (Cyprinus carpio) lymphocytes. Dev Comp Immunol. 1982 Fall;6(4):693–702. [PubMed] [Google Scholar]
- Tournefier A., Fellah S., Charlemagne J. Monoclonal antibodies to axolotl immunoglobulins specific for different heavy chains isotypes expressed by independent lymphocyte subpopulations. Immunol Lett. 1988 Jun;18(2):145–148. doi: 10.1016/0165-2478(88)90055-7. [DOI] [PubMed] [Google Scholar]
- Tournefier A., Guillet F., Ardavin C., Charlemagne J. Surface markers of axolotl lymphocytes as defined by monoclonal antibodies. Immunology. 1988 Feb;63(2):269–276. [PMC free article] [PubMed] [Google Scholar]
- White J., Herman A., Pullen A. M., Kubo R., Kappler J. W., Marrack P. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 1989 Jan 13;56(1):27–35. doi: 10.1016/0092-8674(89)90980-x. [DOI] [PubMed] [Google Scholar]