Skip to main content
Immunology logoLink to Immunology
. 1997 Apr;90(4):640–646. doi: 10.1046/j.1365-2567.1997.00200.x

Expression of rat CD59: functional analysis confirms lack of species selectivity and reveals that glycosylation is not required for function.

N K Rushmere 1, S Tomlinson 1, B P Morgan 1
PMCID: PMC1456686  PMID: 9176120

Abstract

This study reports the expression and functional characterization of the rat analogue of the human complement regulatory molecule CD59. We here describe the expression in chinese hamster ovary (CHO) cells of rat CD59 and a modified rat CD59 in which an N-glycosylation site at Asn-16 has been deleted by point mutation. The complement-inhibiting capacity of these two forms of rat CD59 has been analysed and compared. Expressed rat CD59 efficiently inhibited complement lysis of CHO cells when rat serum was used as a source of complement and also inhibited lysis by complement from all other species tested, confirming that rat CD59 displayed little or no species restriction of activity. Blocking of expressed rat CD59 with a monoclonal antibody abrogated the inhibition of lysis for all sources of complement, confirming that the expressed molecule was responsible for the protection. The glycosylation mutant had a much reduced molecular weight on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (12,000 MW as compared with 20,000-28,000 MW for unmutated), confirming that it was unglycosylated. However, the glycosylation mutant had complement-inhibitory activity which was at least as potent as that of the unmutated molecule, demonstrating that the large, N-linked carbohydrate moiety was not required for function.

Full text

PDF
640

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraha A., Morgan B. P., Luzio J. P. The preparation and characterization of monoclonal antibodies to human complement component C8 and their use in purification of C8 and C8 subunits. Biochem J. 1988 Apr 1;251(1):285–292. doi: 10.1042/bj2510285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akami T., Arakawa K., Okamoto M., Akioka K., Fujiwara I., Nakai I., Mitsuo M., Sawada R., Naruto M., Oka T. Enhancement of the complement regulatory function of CD59 by site-directed mutagenesis at the N-glycosylation site. Transplant Proc. 1994 Jun;26(3):1256–1258. [PubMed] [Google Scholar]
  3. Chang C. P., Hüsler T., Zhao J., Wiedmer T., Sims P. J. Identity of a peptide domain of human C9 that is bound by the cell-surface complement inhibitor, CD59. J Biol Chem. 1994 Oct 21;269(42):26424–26430. [PubMed] [Google Scholar]
  4. Charreau B., Cassard A., Tesson L., Le Mauff B., Blanchard D., Lublin D., Soulillou J. P., Anegon I. Permanent expression of human CD59 and/or decay-accelerating factor by rat endothelial cells confers protection from human complement-mediated lysis. Transplant Proc. 1995 Feb;27(1):336–337. [PubMed] [Google Scholar]
  5. Davies A., Lachmann P. J. Membrane defence against complement lysis: the structure and biological properties of CD59. Immunol Res. 1993;12(3):258–275. doi: 10.1007/BF02918257. [DOI] [PubMed] [Google Scholar]
  6. Davies A., Morgan B. P. Expression of the glycosylphosphatidylinositol-linked complement-inhibiting protein CD59 antigen in insect cells using a baculovirus vector. Biochem J. 1993 Nov 1;295(Pt 3):889–896. doi: 10.1042/bj2950889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deckert M., Kubar J., Bernard A. CD58 and CD59 molecules exhibit potentializing effects in T cell adhesion and activation. J Immunol. 1992 Feb 1;148(3):672–677. [PubMed] [Google Scholar]
  9. Fletcher C. M., Harrison R. A., Lachmann P. J., Neuhaus D. Structure of a soluble, glycosylated form of the human complement regulatory protein CD59. Structure. 1994 Mar 15;2(3):185–199. doi: 10.1016/s0969-2126(00)00020-4. [DOI] [PubMed] [Google Scholar]
  10. Hahn W. C., Menu E., Bothwell A. L., Sims P. J., Bierer B. E. Overlapping but nonidentical binding sites on CD2 for CD58 and a second ligand CD59. Science. 1992 Jun 26;256(5065):1805–1807. doi: 10.1126/science.1377404. [DOI] [PubMed] [Google Scholar]
  11. Hughes T. R., Piddlesden S. J., Williams J. D., Harrison R. A., Morgan B. P. Isolation and characterization of a membrane protein from rat erythrocytes which inhibits lysis by the membrane attack complex of rat complement. Biochem J. 1992 May 15;284(Pt 1):169–176. doi: 10.1042/bj2840169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Husler T., Lockert D. H., Sims P. J. Role of a disulfide-bonded peptide loop within human complement C9 in the species-selectivity of complement inhibitor CD59. Biochemistry. 1996 Mar 12;35(10):3263–3269. doi: 10.1021/bi952862w. [DOI] [PubMed] [Google Scholar]
  13. Hüsler T., Lockert D. H., Kaufman K. M., Sodetz J. M., Sims P. J. Chimeras of human complement C9 reveal the site recognized by complement regulatory protein CD59. J Biol Chem. 1995 Feb 24;270(8):3483–3486. doi: 10.1074/jbc.270.8.3483. [DOI] [PubMed] [Google Scholar]
  14. Kieffer B., Driscoll P. C., Campbell I. D., Willis A. C., van der Merwe P. A., Davis S. J. Three-dimensional solution structure of the extracellular region of the complement regulatory protein CD59, a new cell-surface protein domain related to snake venom neurotoxins. Biochemistry. 1994 Apr 19;33(15):4471–4482. [PubMed] [Google Scholar]
  15. Menu E., Tsai B. C., Bothwell A. L., Sims P. J., Bierer B. E. CD59 costimulation of T cell activation. CD58 dependence and requirement for glycosylation. J Immunol. 1994 Sep 15;153(6):2444–2456. [PubMed] [Google Scholar]
  16. Meri S., Lehto T., Sutton C. W., Tyynelä J., Baumann M. Structural composition and functional characterization of soluble CD59: heterogeneity of the oligosaccharide and glycophosphoinositol (GPI) anchor revealed by laser-desorption mass spectrometric analysis. Biochem J. 1996 Jun 15;316(Pt 3):923–935. doi: 10.1042/bj3160923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meri S., Morgan B. P., Davies A., Daniels R. H., Olavesen M. G., Waldmann H., Lachmann P. J. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990 Sep;71(1):1–9. [PMC free article] [PubMed] [Google Scholar]
  18. Morgan B. P., Meri S. Membrane proteins that protect against complement lysis. Springer Semin Immunopathol. 1994;15(4):369–396. doi: 10.1007/BF01837366. [DOI] [PubMed] [Google Scholar]
  19. Morgan B. P. Physiology and pathophysiology of complement: progress and trends. Crit Rev Clin Lab Sci. 1995;32(3):265–298. doi: 10.3109/10408369509084686. [DOI] [PubMed] [Google Scholar]
  20. Nakano Y., Tozaki T., Kikuta N., Tobe T., Oda E., Miura N., Sakamoto T., Tomita M. Determination of the active site of CD59 with synthetic peptides. Mol Immunol. 1995 Mar;32(4):241–247. doi: 10.1016/0161-5890(94)00154-s. [DOI] [PubMed] [Google Scholar]
  21. Ninomiya H., Stewart B. H., Rollins S. A., Zhao J., Bothwell A. L., Sims P. J. Contribution of the N-linked carbohydrate of erythrocyte antigen CD59 to its complement-inhibitory activity. J Biol Chem. 1992 Apr 25;267(12):8404–8410. [PubMed] [Google Scholar]
  22. Okada N., Harada R., Fujita T., Okada H. A novel membrane glycoprotein capable of inhibiting membrane attack by homologous complement. Int Immunol. 1989;1(2):205–208. doi: 10.1093/intimm/1.2.205. [DOI] [PubMed] [Google Scholar]
  23. Okada N., Harada R., Fujita T., Okada H. Monoclonal antibodies capable of causing hemolysis of neuraminidase-treated human erythrocytes by homologous complement. J Immunol. 1989 Oct 1;143(7):2262–2266. [PubMed] [Google Scholar]
  24. Rogers C. A., Gasque P., Piddlesden S. J., Okada N., Holers V. M., Morgan B. P. Expression and function of membrane regulators of complement on rat astrocytes in culture. Immunology. 1996 May;88(1):153–161. doi: 10.1046/j.1365-2567.1996.d01-637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rollins S. A., Zhao J., Ninomiya H., Sims P. J. Inhibition of homologous complement by CD59 is mediated by a species-selective recognition conferred through binding to C8 within C5b-8 or C9 within C5b-9. J Immunol. 1991 Apr 1;146(7):2345–2351. [PubMed] [Google Scholar]
  26. Rosse W. F. Phosphatidylinositol-linked proteins and paroxysmal nocturnal hemoglobinuria. Blood. 1990 Apr 15;75(8):1595–1601. [PubMed] [Google Scholar]
  27. Rother R. P., Rollins S. A., Mennone J., Chodera A., Fidel S. A., Bessler M., Hillmen P., Squinto S. P. Expression of recombinant transmembrane CD59 in paroxysmal nocturnal hemoglobinuria B cells confers resistance to human complement. Blood. 1994 Oct 15;84(8):2604–2611. [PubMed] [Google Scholar]
  28. Rushmere N. K., Harrison R. A., van den Berg C. W., Morgan B. P. Molecular cloning of the rat analogue of human CD59: structural comparison with human CD59 and identification of a putative active site. Biochem J. 1994 Dec 1;304(Pt 2):595–601. doi: 10.1042/bj3040595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takizawa H., Takahashi K., Murakami T., Okada N., Okada H. Species-specific restriction of complement by HRF20 (CD59) generated by cDNA transfection. Eur J Immunol. 1992 Jul;22(7):1943–1946. doi: 10.1002/eji.1830220741. [DOI] [PubMed] [Google Scholar]
  30. Walsh L. A., Tone M., Waldmann H. Transfection of human CD59 complementary DNA into rat cells confers resistance to human complement. Eur J Immunol. 1991 Mar;21(3):847–850. doi: 10.1002/eji.1830210349. [DOI] [PubMed] [Google Scholar]
  31. van den Berg C. W., Harrison R. A., Morgan B. P. A rapid method for the isolation of analogues of human CD59 by preparative SDS-PAGE: application to pig CD59. J Immunol Methods. 1995 Feb 27;179(2):223–231. doi: 10.1016/0022-1759(94)00288-8. [DOI] [PubMed] [Google Scholar]
  32. van den Berg C. W., Harrison R. A., Morgan B. P. The sheep analogue of human CD59: purification and characterization of its complement inhibitory activity. Immunology. 1993 Mar;78(3):349–357. [PMC free article] [PubMed] [Google Scholar]
  33. van den Berg C. W., Morgan B. P. Complement-inhibiting activities of human CD59 and analogues from rat, sheep, and pig are not homologously restricted. J Immunol. 1994 Apr 15;152(8):4095–4101. [PubMed] [Google Scholar]
  34. van der Merwe P. A., Barclay A. N., Mason D. W., Davies E. A., Morgan B. P., Tone M., Krishnam A. K., Ianelli C., Davis S. J. Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. Biochemistry. 1994 Aug 23;33(33):10149–10160. doi: 10.1021/bi00199a043. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES