Skip to main content
Immunology logoLink to Immunology
. 1997 Jan;90(1):95–100. doi: 10.1046/j.1365-2567.1997.00137.x

Isoproterenol regulates tumour necrosis factor, interleukin-10, interleukin-6 and nitric oxide production and protects against the development of vascular hyporeactivity in endotoxaemia.

C Szabó 1, G Haskó 1, B Zingarelli 1, Z H Németh 1, A L Salzman 1, V Kvetan 1, S M Pastores 1, E S Vizi 1
PMCID: PMC1456713  PMID: 9038718

Abstract

Pro-inflammatory cytokines, such as tumour necrosis factor (TNF) and free radicals, such as nitric oxide (NO), are mediators of endotoxaemia. Catecholamines are in clinical use to treat the haemodynamic consequences of severe septic shock. Beta-adrenergic agonists exert many of their effects by elevation of intracellular cyclic AMP (cAMP) concentration. Cyclic AMP can modulate endotoxin-induced cytokine and NO production. Here we investigate the effect of isoproterenol pretreatment on the cytokine and NO production induced by bacterial lipopolysaccharide (LPS, 4-10 mg/kg). Pretreatment with isoproterenol (10 mg/kg) blunted the LPS-induced TNF response, increased the LPS-induced formation of interleukin-10 and interleukin-6 and reduced the LPS-induced production of NO in conscious mice. In anaesthetized rats, pretreatment with isoproterenol prevented the LPS-induced suppression of vascular contractility to norepinephrine in the thoracic aorta ex vivo. The hyporeactivity is due to expression of the inducible isoform of NO synthase (iNOS) and was restored by in vitro administration of NG-methyl-L-arginine (L-NMA), an inhibitor of NO synthase. However, L-NMA did not alter vascular contractility in control vessels or in rings taken from the LPS-treated rats pretreated with isoproterenol. Our findings suggest that, in addition to its haemodynamic actions, isoproterenol may also exert beneficial effects by modulating the endotoxin-induced inflammatory response.

Full text

PDF
95

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai T., Hiromatsu K., Kobayashi N., Takano M., Ishida H., Nimura Y., Yoshikai Y. IL-10 is involved in the protective effect of dibutyryl cyclic adenosine monophosphate on endotoxin-induced inflammatory liver injury. J Immunol. 1995 Dec 15;155(12):5743–5749. [PubMed] [Google Scholar]
  2. Bouma M. G., Stad R. K., van den Wildenberg F. A., Buurman W. A. Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J Immunol. 1994 Nov 1;153(9):4159–4168. [PubMed] [Google Scholar]
  3. Bulut V., Severn A., Liew F. Y. Nitric oxide production by murine macrophages is inhibited by prolonged elevation of cyclic AMP. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1134–1138. doi: 10.1006/bbrc.1993.2162. [DOI] [PubMed] [Google Scholar]
  4. Elenkov I. J., Haskó G., Kovács K. J., Vizi E. S. Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice. J Neuroimmunol. 1995 Sep;61(2):123–131. doi: 10.1016/0165-5728(95)00080-l. [DOI] [PubMed] [Google Scholar]
  5. Feinstein D. L., Galea E., Reis D. J. Norepinephrine suppresses inducible nitric oxide synthase activity in rat astroglial cultures. J Neurochem. 1993 May;60(5):1945–1948. doi: 10.1111/j.1471-4159.1993.tb13425.x. [DOI] [PubMed] [Google Scholar]
  6. Fonteh A. N., Winkler J. D., Torphy T. J., Heravi J., Undem B. J., Chilton F. H. Influence of isoproterenol and phosphodiesterase inhibitors on platelet-activating factor biosynthesis in the human neutrophil. J Immunol. 1993 Jul 1;151(1):339–350. [PubMed] [Google Scholar]
  7. Haskó G., Elenkov I. J., Kvetan V., Vizi E. S. Differential effect of selective block of alpha 2-adrenoreceptors on plasma levels of tumour necrosis factor-alpha, interleukin-6 and corticosterone induced by bacterial lipopolysaccharide in mice. J Endocrinol. 1995 Mar;144(3):457–462. doi: 10.1677/joe.0.1440457. [DOI] [PubMed] [Google Scholar]
  8. Haskó G., Szabó C., Merkel K., Bencsics A., Zingarelli B., Kvetan V., Vizi E. S. Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production by dopamine receptor agonists and antagonists in mice. Immunol Lett. 1996 Mar;49(3):143–147. doi: 10.1016/0165-2478(96)02494-7. [DOI] [PubMed] [Google Scholar]
  9. Haskó G., Szabó C., Németh Z. H., Kvetan V., Pastores S. M., Vizi E. S. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol. 1996 Nov 15;157(10):4634–4640. [PubMed] [Google Scholar]
  10. Ignatowski T. A., Spengler R. N. Regulation of macrophage-derived tumor necrosis factor production by modification of adrenergic receptor sensitivity. J Neuroimmunol. 1995 Aug;61(1):61–70. doi: 10.1016/0165-5728(95)00074-c. [DOI] [PubMed] [Google Scholar]
  11. Imai T., Hirata Y., Kanno K., Marumo F. Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells. J Clin Invest. 1994 Feb;93(2):543–549. doi: 10.1172/JCI117005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kilbourn R. G., Cromeens D. M., Chelly F. D., Griffith O. W. NG-methyl-L-arginine, an inhibitor of nitric oxide formation, acts synergistically with dobutamine to improve cardiovascular performance in endotoxemic dogs. Crit Care Med. 1994 Nov;22(11):1835–1840. [PubMed] [Google Scholar]
  13. Koide M., Kawahara Y., Nakayama I., Tsuda T., Yokoyama M. Cyclic AMP-elevating agents induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. Synergism with the induction elicited by inflammatory cytokines. J Biol Chem. 1993 Nov 25;268(33):24959–24966. [PubMed] [Google Scholar]
  14. Nelson H. S. Beta adrenergic agonists. Chest. 1982 Jul;82(1 Suppl):33S–38S. doi: 10.1378/chest.82.1_supplement.33s. [DOI] [PubMed] [Google Scholar]
  15. Parmely M. J., Zhou W. W., Edwards C. K., 3rd, Borcherding D. R., Silverstein R., Morrison D. C. Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-alpha production and protect mice against endotoxin challenge. J Immunol. 1993 Jul 1;151(1):389–396. [PubMed] [Google Scholar]
  16. Pastores S. M., Hasko G., Vizi E. S., Kvetan V. Cytokine production and its manipulation by vasoactive drugs. New Horiz. 1996 May;4(2):252–264. [PubMed] [Google Scholar]
  17. Petros A., Lamb G., Leone A., Moncada S., Bennett D., Vallance P. Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res. 1994 Jan;28(1):34–39. doi: 10.1093/cvr/28.1.34. [DOI] [PubMed] [Google Scholar]
  18. Platzer C., Meisel C., Vogt K., Platzer M., Volk H. D. Up-regulation of monocytic IL-10 by tumor necrosis factor-alpha and cAMP elevating drugs. Int Immunol. 1995 Apr;7(4):517–523. doi: 10.1093/intimm/7.4.517. [DOI] [PubMed] [Google Scholar]
  19. Rudis M. I., Basha M. A., Zarowitz B. J. Is it time to reposition vasopressors and inotropes in sepsis? Crit Care Med. 1996 Mar;24(3):525–537. doi: 10.1097/00003246-199603000-00026. [DOI] [PubMed] [Google Scholar]
  20. Severn A., Rapson N. T., Hunter C. A., Liew F. Y. Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists. J Immunol. 1992 Jun 1;148(11):3441–3445. [PubMed] [Google Scholar]
  21. Southan G. J., Zingarelli B., O'Connor M., Salzman A. L., Szabó C. Spontaneous rearrangement of aminoalkylisothioureas into mercaptoalkylguanidines, a novel class of nitric oxide synthase inhibitors with selectivity towards the inducible isoform. Br J Pharmacol. 1996 Feb;117(4):619–632. doi: 10.1111/j.1476-5381.1996.tb15236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Strassmann G., Patil-Koota V., Finkelman F., Fong M., Kambayashi T. Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J Exp Med. 1994 Dec 1;180(6):2365–2370. doi: 10.1084/jem.180.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Strassmann G., Patil-Koota V., Finkelman F., Fong M., Kambayashi T. Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J Exp Med. 1994 Dec 1;180(6):2365–2370. doi: 10.1084/jem.180.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Szabó C., Salzman A. L., Ischiropoulos H. Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Lett. 1995 Sep 25;372(2-3):229–232. doi: 10.1016/0014-5793(95)00984-h. [DOI] [PubMed] [Google Scholar]
  25. Szabó C., Wu C. C., Mitchell J. A., Gross S. S., Thiemermann C., Vane J. R. Platelet-activating factor contributes to the induction of nitric oxide synthase by bacterial lipopolysaccharide. Circ Res. 1993 Dec;73(6):991–999. doi: 10.1161/01.res.73.6.991. [DOI] [PubMed] [Google Scholar]
  26. Thiemermann C., Wu C. C., Szabó C., Perretti M., Vane J. R. Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock. Br J Pharmacol. 1993 Sep;110(1):177–182. doi: 10.1111/j.1476-5381.1993.tb13789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wise W. C., Cook J. A., Halushka P. V. Arachidonic acid metabolism in endotoxin tolerance. Adv Shock Res. 1983;10:131–142. [PubMed] [Google Scholar]
  28. Worthley L. I., Tyler P., Moran J. L. A comparison of dopamine, dobutamine and isoproterenol in the treatment of shock. Intensive Care Med. 1985;11(1):13–19. doi: 10.1007/BF00256059. [DOI] [PubMed] [Google Scholar]
  29. Wu C. C., Szabó C., Chen S. J., Thiemermann C., Vane J. R. Activation of soluble guanylyl cyclase by a factor other than nitric oxide or carbon monoxide contributes to the vascular hyporeactivity to vasoconstrictor agents in the aorta of rats treated with endotoxin. Biochem Biophys Res Commun. 1994 May 30;201(1):436–442. doi: 10.1006/bbrc.1994.1720. [DOI] [PubMed] [Google Scholar]
  30. Zingarelli B., O'Connor M., Wong H., Salzman A. L., Szabó C. Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol. 1996 Jan 1;156(1):350–358. [PubMed] [Google Scholar]
  31. van der Poll T., Coyle S. M., Barbosa K., Braxton C. C., Lowry S. F. Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J Clin Invest. 1996 Feb 1;97(3):713–719. doi: 10.1172/JCI118469. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES